НОМЕР ПРОЕКТА 12-05-92697			УЧЕТНАЯ КАРТОЧКА
НАЗВАНИЕ ПРОЕКТА Оценка долгосрочного цунами-риска для побережья Индии			
ОБЛАСТЬ ЗНАНИЯ	05 - науки о земле		КОД(Ы) КЛАССИФИКАТОРА
КОД И НАЗВАНИЕ КОНКУРСА ИНД_а - Конкурс совместных российско-индийских исследовательских проектов			05-513 05-412 01-223
ФАМИЛИЯ, ИМЯ, ОТЧЕСТВО РУКОВОДИТЕЛЯ ПРОЕКТА Шокин Юрий Иванович			ТЕЛЕФОН РУКОВОДИТЕЛЯ ПРОЕКТА +73833306150
ПОЛНОЕ НАЗВАНИЕ ОРГАНИЗАЦИ физическим лицам Федеральное государственно вычислительных технологий	е бюджетн	ое учреждение н	
ОБЪЕМ СРЕДСТВ, ФАКТИЧЕСКИ ПОЛУЧЕННЫХ ЗА 2013 г. 55	0000 руб.		
СОСТАВ НАУЧНОГО КОЛЛЕКТИВА, ВЫПОЛНЯВШЕГО РАБОТЫ ПО			ПРОЕКТУ В 2013 ГОДУ
ЧИСЛО ЧЛЕНОВ НАУЧНОГО КОЛЛЕКТИВА, ВКЛЮЧАЯ РУКОВОДИТЕЛЯ 8	ЧИСЛО ЧЛЕНОВ НАУЧНОГО КОЛЛЕКТИВА, ИМЕЮЩИХ УЧЕНУЮ СТЕПЕНЬ 5		ЧИСЛО НАУЧНОГО КОЛЛЕКТИВА В ВОЗРАСТЕ ДО 35 ЛЕТ ВКЛЮЧИТЕЛЬНО 3
ФИО члена научного коллектива			
Худякова Виктория Константиновна			
Бейзель Софья Александровна			
Амелин Иван Иванович			
Калашникова Тамара Владимировна			
Гусяков Вячеслав Константинович			
Чубаров Леонид Борисович			
Шокин Юрий Иванович			
Хакимзянов Гаяз Салимович			
СОСТАВ НАУЧНОГО КОЛЛЕКТИВА, КОТОРЫЙ БУДЕТ ВЫПОЛНЯТІ ГОДУ			ь РАБОТЫ ПО ПРОЕКТУ В 2014
ЧИСЛО ЧЛЕНОВ НАУЧНОГО КОЛЛЕКТИВА, ВКЛЮЧАЯ РУКОВОДИТЕЛЯ 0		ЕНОВ НАУЧНОГО ІВА, ИМЕЮЩИХ ТЕПЕНЬ 0	ЧИСЛО НАУЧНОГО КОЛЛЕКТИВА В ВОЗРАСТЕ ДО 35 ЛЕТ ВКЛЮЧИТЕЛЬНО 0
ФИО члена научного коллектива			
ПОДПИСЬ РУКОВОДИТЕЛЯ ПРОЕКТА			ДАТА 30.01.2014

РАСШИРЕННАЯ АННОТАЦИЯ ОТЧЕТА

В течение многих лет проблема цунамиопасности индийского побережья не рассматривалась на сколь-нибудь серьезном уровне, до 2004 года в стране не было национальной системы предупреждения о цунами. Индонезийское цунами 26 декабря 2004 года, жертвами которого на побережье Индии стали более 12.5 тыс. человек, в корне изменило эту ситуацию. В течение короткого времени в стране была создана система раннего предупреждения о цунами, которая по принципам построения и своей технической оснащенности является одной из лучших среди существующих национальных и региональных систем. Начаты работы по оценке долгосрочного цунамириска для участков побережья страны, на которых располагаются важные энергетические и инфраструктурные объекты. Наш проект, выполняемый совместно с Национальным геофизическим исследовательским институтом (National Geophysical Research Institute) в Хайдерабаде, был направлен на создание вычислительной методологии и программного обеспечения, которое могло бы быть использовано для получения расчетной основы карты цунамиопасности Индии, а также для использования в оперативном прогнозе.

В ходе выполнения проекта были получены следующие важнейшие результаты:

- 1. Созданы вычислительная методология и технологический инструментарий для численного моделирования возбуждения и распространения цунами на реальных участках акватории Индийского океана. Построена цифровая модель батиметрии расчетной области для моделирования распространения волн цунами от областей генерации к побережью.
- 2. Предложена сейсмотектоническая схема расположения очагов цунамигенных землетрясений в основных сейсмогенных зонах северной и северо-восточной частей Индийского океана (Рис. 1), и выполнена большая серия сценарных расчетов по моделированию порожденных ими волн цунами.

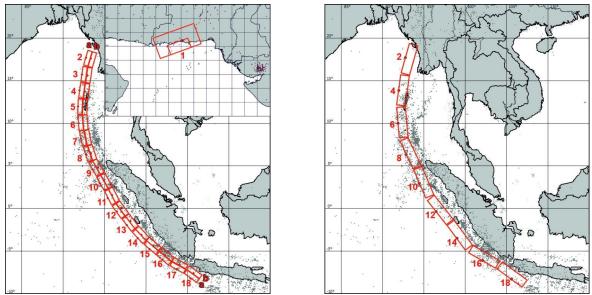


Рис. 1. Карта сейсмичности северо-восточной части Индийского океана с нанесенными на нее проекциями площадок разрыва модельных очагов подводных землетрясений с магнитудами $M_W=8.4\,$ (слева) и $M_W=9.0\,$ (справа). На врезке к левому фрагменту рисунка показано расположение площадок очагов для модельных землетрясений с магнитудами $M_W=8.4\,$ и $M_W=9.0\,$ в Макранской зоне. Цифры у площадок означают номера модельных очагов.

3. В результате сводной обработки результатов сценарных расчетов получены гистограммы распределения максимальных (положительных и отрицательных) амплитуд волн цунами в точках побережья Индии, представляющие расчетную основу для построения обзорной карты цунамирайонирования побережья Индии (см. Рис. 3).

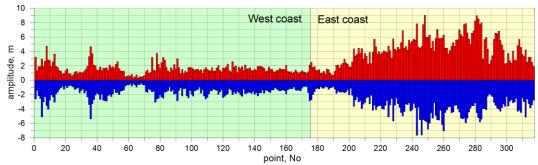


Рис. 3. Распределение (гистограмма) максимальных (за все время расчета) положительных и отрицательных амплитуд волн в каждом десятом из береговых виртуальных мареографов, размещенных вдоль побережья Индии, для всех очагов с магнитудой 9.0.

- 4. Анализ полученных гистограмм показывает, что цунамиопасность восточного побережья в целом существенно (в 2-3 раза) выше, чем западного, причем это соотношение сохраняется примерно одинаковым в диапазоне магнитуд 8.0-9.0. Показано также, что основную опасность для побережья Индии представляют очаги мегаземлетрясений класса M9, расположенные в Суматранско-Яванской субдукционной зоне. При этом наиболее опасными для восточного побережья Индии являются очаги, расположенные в ее северной части (между 20° и 10° с.ш.). Зона наибольшего прямого воздействия порожденных этими очагами цунами приходится на плотно заселенное и в то же время низменное северо-восточное побережье Индии (между городами Калькутта и Вишакхапатнам).
- 5. Другая наиболее опасная цунамигенная зона находится вблизи западной границы Индии с Пакистаном. Результаты анализа диаграмм свечения (Рис. 4) подтверждают высокую угрозу цунами для всего западного побережья Индии от очагов в этой сейсмогенной зоне. Оценивая макранскую зону в целом, следует сказать, что несмотря на свою локальность, она способна оказать опасное воздействие практически на все западное побережье.
- 6. Наконец, показано, что при возникновении цунамигенного землетрясения как в восточной (Суматранско-Яванской), так и в западной (Макранской) субдукционных зонах под ударом оказывается только одна (восточная либо западная) часть всего индийского побережья.

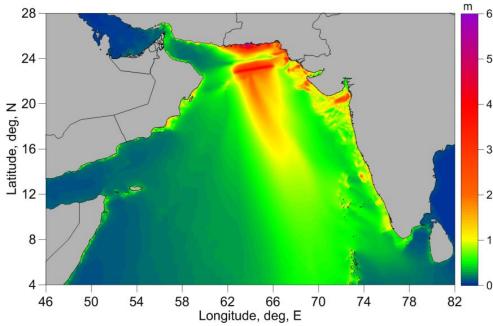


Рис. 4. Диаграмма свечения максимальных положительных амплитуд волн для модельного очага № 1 с магнитудой $M_W=9.0$, расположенного в Макранской сейсмогенной зоне.

Форма 501. КРАТКИЙ НАУЧНЫЙ ОТЧЕТ

1.1. Номер проекта

12-05-92697

1.2. Руководитель проекта

Шокин Юрий Иванович

1.3. Название проекта

Оценка долгосрочного цунами-риска для побережья Индии

1.4. Вид конкурса

ИНД_а - Конкурс совместных российско-индийских исследовательских проектов

1.5. Год представления отчета

2014

1.6. Вид отчета

итоговый (2012-2013)

1.7. Аннотация

В ходе выполнения проекта были получены следующие важнейшие результаты:

- 1. Созданы вычислительная методология и технологический инструментарий для численного моделирования возбуждения и распространения цунами на реальных участках акватории Индийского океана. Построена цифровая модель батиметрии расчетной области для моделирования распространения волн цунами от областей генерации к побережью.
- 2. Предложена сейсмотектоническая схема расположения очагов цунамигенных землетрясений в основных сейсмогенных зонах северной и северо-восточной частей Индийского океана, и выполнена большая серия сценарных расчетов по моделированию порожденных ими волн цунами.
- 3. В результате сводной обработки результатов сценарных расчетов получены гистограммы распределения максимальных (положительных и отрицательных) амплитуд волн цунами в точках побережья Индии, представляющие расчетную основу для построения обзорной карты цунамирайонирования побережья Индии.
- 4. Анализ полученных гистограмм показывает, что цунамиопасность восточного побережья в целом существенно (в 2 3 раза) выше, чем западного, причем это соотношение сохраняется примерно одинаковым в диапазоне магнитуд 8.0 9.0. Показано также, что основную опасность для побережья Индии представляют очаги мега-землетрясений класса М9, расположенные в Суматранско-Яванской субдукционной зоне. Причем наиболее опасными для восточного побережья Индии являются очаги, расположенные в ее северной части (между 20° и 10° с.ш.). Зона наибольшего прямого воздействия порожденных этими очагами цунами приходится на плотно заселенное и в то же время низменное северовосточное побережье Индии (между городами Калькутта и Вишакхапатнам).
- 5. Другая наиболее опасная цунамигенная зона находится вблизи западной границы Индии с Пакистаном и связана с зоной контакта Арабской микроплиты с Евроазиатской вдоль Макранской субдукционной зоны. Результаты анализа диаграмм свечения подтверждают высокую угрозу цунами для всего западного побережья Индии от очагов в этой сейсмогенной зоне. Оценивая макранскую зону в целом, следует сказать, что несмотря на свою локальность, она способна оказать опасное воздействие практически на все западное побережье.
 - 6. Наконец, при возникновении цунамигенного землетрясения как в

- восточной (Суматранско-Яванской), так и западной (Макранской) субдукционных зонах под ударом оказывается только одна (восточная либо западная) часть всего индийского побережья.
- 1.8. Полное название организации, где выполняется проект Федеральное государственное бюджетное учреждение науки Институт вычислительных технологий Сибирского отделения Российской академии наук

"Исполнители проекта согласны с опубликованием (в печатной и электронной формах) научных отчетов и перечня публикаций по проекту"

Подпись руководителя проекта

Форма 503М. РАЗВЕРНУТЫЙ НАУЧНЫЙ ОТЧЕТ

3.1. Номер проекта

12-05-92697

- 3.2. Название проекта Оценка долгосрочного цунами-риска для побережья Индии
- 3.3. Коды классификатора, соответствующие содержанию фактически проделанной работы(в порядке значимости) 05-513 05-412 01-223
- 3.4. Объявленные ранее цели проекта на 2013 год Объявленная на заключительный год работ цель российского коллектива исполнителей проекта была сформулирована так:
 - оценка важнейших характеристик проявления волн цунами у побережья Индии в терминах, допускающих использование в решении не только фундаментальных, но и прикладных задач снижения опасности от цунами для Индийского побережья.

При этом предполагалось получить следующие научные результаты:

- получить уточненные географические границы цунамигенных зон, потенциально опасных для побережья Индии;
- предложить прототип обзорной карты ожидаемых высот цунами на побережье Индии;
- выполнить оценку повторяемостей волн различной высоты;
- определить участки цунамигенных зон, угрожающих наиболее крупным населенным пунктам на индийском побережье.
- 3.5. Степень выполнения поставленных в проекте задач Задачи, поставленные перед исполнителями проекта, в целом выполнены, основные цели исследования достигнуты.
- 3.6. Полученные за отчетный год важнейшие результаты
 В перечень важнейших на наш взгляд следует включить следующие результаты.
 - 1. Созданы вычислительная методология и технологический инструментарий для численного моделирования возбуждения и распространения цунами на реальных участках акватории Индийского океана, с помощью которого выполнена большая серия сценарных расчетов по моделированию воздействия на побережье волн цунами, порожденных системой модельных очагов, аппроксимирующих основные цунамигенные зоны северной и северо-восточной частей Индийского океана (рис.1, 2). Получен большой объем расчетных материалов, включающий следующие группы данных:
 - расчетные мареограммы в точках размещения виртуальных мареографов;
 - распределения (гистограммы) экстремальных (максимальных положительных и отрицательных) амплитуд волн в точках размещения этих мареографов;
 - карты свечения распределения максимальных положительных и отрицательных амплитуд волн во всех узлах расчетной акватории;
 - распределения времен регистрации первых вступлений (ETA Expected Tsunami Arrival) в точках размещения виртуальных мареографов и во всех узлах расчетной сетки;
 - распределения времен регистрации максимальных значений амплитуд волн (ETM Expected Tsunami Maximum) в точках

- размещения виртуальных мареографов;
- величина Е, определяемая для каждого конкретного очага и являющаяся интегральной энергетической характеристикой опасности воздействия соответствующего цунами на все побережье в целом:

$$E = \sqrt{\sum_{i=1}^N A_i^2} ,$$

где A_i — сумма абсолютных величин максимальных и минимальных значений уровня за все время расчета, порожденных модельным очагом в \dot{r} ой расчетной точке, N — число виртуальных мареографов. Величина E, посчитанная по всем виртуальным мареографам, располагавшимся вдоль индийского побережья, может служить аналогом доли энергии цунами, пришедшей к этому побережью от конкретного источника, на основании которой можно сравнивать относительную цунамиопасность различных очагов.

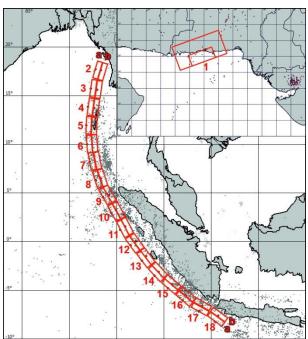


Рис. 1. Карта сейсмичности северо-восточной части Индийского океана с нанесенными на нее проекциями площадок разрыва модельных очагов подводных землетрясений с магнитудой $M_W=8.4$. На врезке показано расположение площадок очагов для модельных землетрясений с магнитудами $M_W=8.4$ и $M_W=9.0$ в Макранской зоне. Цифры у площадок означают номера модельных очагов, упоминаемых в тексте.

2. Анализ полученных гистограмм максимальных высот волн на побережье и построенной на их основе интегральной энергетической характеристике E (рис. 3) показывает, что основную опасность для побережья Индии представляют очаги мега-землетрясений класса М9, расположенные в Суматранско-Яванской субдукционной зоне. По величине интегральной характеристики E их опасность примерно на порядок превышает опасность очагов с магнитудой 8.4. Именно к этому классу принадлежало землетрясение 26 декабря 2004 года $M_w = 9.1$,

вызвавшее трансокеанское цунами в Индийском океане, которое привело к гибели свыше 12.5 тыс. человек на восточном побережье Индии.

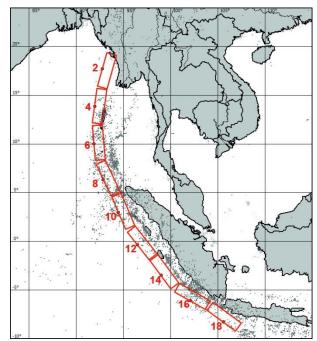


Рис. 2. Карта сейсмичности северо-восточной части Индийского океана с нанесенными на нее проекциями площадок разрыва модельных очагов подводных землетрясений с магнитудой $M_W=9.0$. Расположение площадки очага такого модельного землетрясения с номером 1 в Макранской зоне показано на врезке к рис. 1. Цифры у площадок означают номера модельных очагов, упоминаемых в тексте.

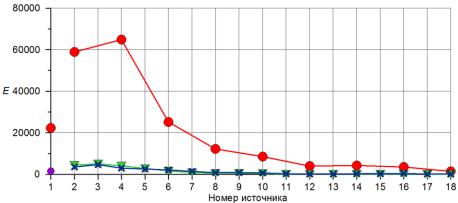


Рис. 3. Интегральная энергетическая характеристика E воздействия очагов цунамигенных землетрясений различной магнитуды на побережье Индии. По вертикальной оси отложены значения характеристики E, по горизонтальной — номера модельных очагов землетрясений (см. рис. 1, 2). Красные кружки соответствуют очагам Суматранско-Яванской зоны с магнитудой 9.0, зеленые (треугольники) — с магнитудой 8.4 (серия «a»), синие (крестики) — с магнитудой 8.4 (серия «b»). В левой части рисунка изображены значения, соответствующие очагам Макранской зоны с магнитудой 8.4 (фиолетовый кружок) и с магнитудой 9.0 (красный кружок).

3. Из всей достаточно протяженной (длиной более 5000 км)

Суматранско-Яванской зоны наиболее опасными для восточного побережья Индии являются очаги, расположенные в ее северной части (между 20° и 10° с.ш.). Зона наибольшего прямого воздействия порожденных этими очагами цунами приходится на плотно заселенное и в то же время низменное северо-восточное побережье Индии (между городами Калькутта и Вишакхапатнам) (рис.4). При смещении очагов к югу (южнее 10° с.ш.) цунамиопасность очагов мега-землетрясений резко снижается и при переходе через экватор становится сопоставимой с существенно более низкой опасностью от очагов с магнитудой 8.4. Здесь стоит подчеркнуть, что разрушительное мега-землетрясение 26.12.2004 г. имело инструментальный эпицентр, расположенный на широте 3.5° с.ш., т.е. его очаг располагался достаточно далеко к югу от наиболее опасной (для Индии) северной части субдукционной зоны.



Рис. 4. Диаграммы свечения максимальных положительных и гистограммы максимальных положительных и отрицательных расчетных амплитуд волн на побережье для модельных очагов N^0 2 (a), 4(б), 6 (в) и 8 (г) с магнитудой $M_W = 9.0$, расположенных в Суматранско-Яванской сейсмогенной зоне.

4. Другая наиболее опасная цунамигенная зона находится вблизи западной границы Индии с Пакистаном и связана с зоной контакта Арабской микроплиты с Евроазиатской вдоль Макранской субдукционной

зоны. В 1945 году здесь произошло разрушительное землетрясение с магнитудой 8.1, вызвавшее волны цунами с высотами до 15 м на ближайшем побережье, которые распространялись вдоль всего западного побережья Индии на расстояние более 1500 км и привели к жертвам в Момбае, расположенном на удалении более 1300 км от очага. Повышенное внимание к цунами-риску в этом регионе связано с Калпасарским проектом, предусматривающим строительство к 2020 году дамбы длиной 35 км через залив Хамбхат (Gulf of Khambhat). Дамба будет использоваться для генерации электроэнергии на основе использования динамики приливов, накопления в отгороженной части залива пресной воды, пригодной для ирригации, и как транспортная артерия, существенно сокращающая дорогу между двумя крупными городами (Гхогха и Хансот). Стоимость реализации проекта оценивается примерно в 12 млрд. долларов, в настоящее время проводится его техникоэкономическое обоснование с учетом всех видов рисков.

5. Результаты анализа диаграмм свечения подтверждают высокую угрозу цунами для всего западного побережья Индии от очагов в Макранской сейсмогенной зоне. Значительные высоты волн вдоль западного побережья, наблюдавшиеся при цунами 1945 года, могут объясняться захватом волновой энергии шельфом, имеющим здесь существенно большую ширину по сравнению с восточным побережьем. Аномально высокий ущерб от цунами 1945 года в порту Карвар (Karwar), находящемся на удалении почти 1800 км от очага (Berninghausen, 1966), может объясняться тем, что именно к этому месту западного побережья подходит луч энергии, распространяющийся от очага землетрясения вдоль волновода, образованного подводным хребтом и цепочкой подводных гор (рис. 5).

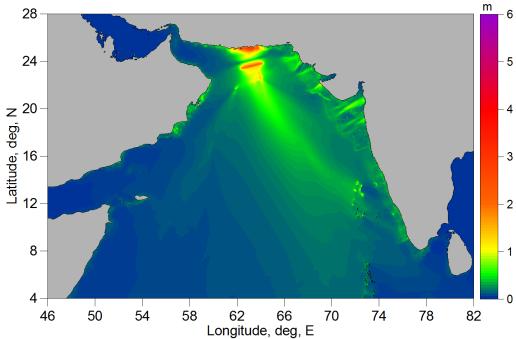


Рис. 5. Диаграмма свечения для модельного очага N^{o} 1 с магнитудой $M_{W}=8.4$, расположенного в Макранской сейсмогенной зоне.

6. Оценивая Макранскую зону в целом, следует сказать, что несмотря

на свою малую протяженность (локальность), она способна оказывать опасное воздействие практически на все западное побережье Индии в целом, благодаря взаимной ориентации (расположению почти под прямым углом линии простирания очага и побережья), наличию подводных волноводов и аномально широкому шельфу вдоль западного побережья. Здесь необходимо подчеркнуть, что значительные высоты волн были рассчитаны для модельного очага, частично (как это было в 1945 году) расположенного в пределах суши. Расположение очага целиком в пределах морской акватории может служить дополнительным фактором, усиливающим угрозу от макранских очагов для западного побережья Индии.

- 7. При возникновении цунамигенного землетрясения как в восточной (Суматранско-Яванской), так и в западной (Макранской) субдукционных зонах под ударом оказывается только одна (восточная либо западная) часть всего индийского побережья. Развития значительных (с амплитудой более 1 м) колебаний на «теневой» части побережья не происходит, т.к. вследствие рефракции (разворота в сторону мелководья) на шельфе и континентальном склоне волны цунами практически не могут распространяться вдоль берега.
- 8. В процессе сводной обработки результатов сценарных расчетов были получены итоговые гистограммы распределения максимальных (положительных и отрицательных) амплитуд волн цунами в точках побережья Индии (рис. 6 и 7). Такого рода гистограммы дают расчетную основу для построения обзорной карты цунамиопасности Индии. Переход к непосредственному построению такой карты с необходимостью потребует определения для полученных максимальных амплитуд вероятности их превышения в течение заданного интервала времени (50, 100, 500, 1000 лет), что может быть сделано на основе данных о повторяемости цунамигенных землетрясений различной магнитуды (в данном случае, 8.4 и 9.0).

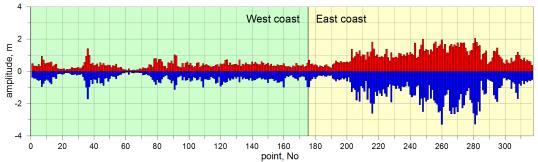


Рис. 6. Распределение (гистограмма) максимальных (за все время расчета) положительных и отрицательных амплитуд волн в каждом десятом из береговых виртуальных мареографов, размещенных вдоль побережья Индии (см. рис. 9) для всех очагов с магнитудой 8.4 (серия «а»).

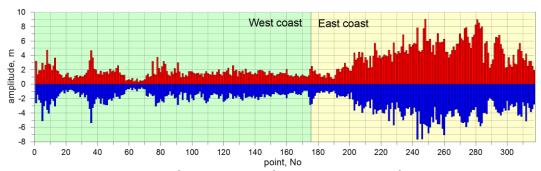


Рис. 7. Распределение (гистограмма) максимальных (за все время расчета) положительных и отрицательных амплитуд волн в каждом десятом из береговых виртуальных мареографов, размещенных вдоль побережья Индии (см. рис. 9) для всех очагов с магнитудой 9.0.

9. В свою очередь, реалистичная оценка повторяемостей сильнейших цунамигенных землетрясений требует комплексного анализа имеющихся региональных сейсмических каталогов, данных тектоники и палеосейсмологии. Она особенно трудна для предельно возможных магнитуд (9.0 и выше), поскольку такие землетрясения могут вообще отсутствовать в региональном каталоге (ситуация, которая существовала в регионе Индийского океана до декабря 2004 года). Дальнейшие исследования следов палеоцунами показали, однако, что в регионе в течение последних примерно полутора тысяч лет произошло четыре таких мега-землетрясения, вызвавших трансокеанское цунами (Jankaew et al, 2008), таким образом, средний период повторяемости сильнейших цунами здесь составляет 400-500 лет.

10. Анализ полученных итоговых гистограмм показывает, что цунамиопасность восточного побережья в целом существенно (в 2 – 3 раза) выше, чем западного, причем это соотношение сохраняется примерно одинаковым в диапазоне магнитуд 8.0 – 9.0. Средние положительные амплитуды на восточном берегу от землетрясений магнитуды 9.0 составляют порядка 4 – 4.5 м, тогда как на западном они не превышают 1.5 – 2 м.

Одним из важнейших результатов проекта стало и установление надежного взаимодействия с индийской стороной, представляемой д-ром К.Сривастава (К. Srivastava), возглавляющей группу исследования цунами в Национальном геофизическом исследовательском институте (NGRI) в Хайдерабаде, и д-ром С.Кумар (S.Kumar), заведующим отделом оперативного прогнозирования цунами в Индийском национальном центре информации по океану (INCOIS).

Так, на основе данных, полученных от индийских участников, была проведена оценка положения и размеров основных цунамигенных зон, угрожающих побережью Индии, выполнен сбор и систематизация данных о магнитудах и механизмах очагов цунамигенных землетрясений Индийского океана, определен основной набор эталонных магнитуд цунамигенных землетрясений различной силы и произведен выбор модельных механизмов очагов для каждого магнитудного диапазона.

Для обсуждения итоговых результатов в ноябре 2013 года

состоялась поездка одного из исполнителей проекта (В.К. Гусякова) в Хайдерабад с посещением Национального геофизического исследовательского института и Национального центра информации по океану.

Результаты выполненной работы по проекту были представлены в двух научных докладах, сделанных в NGRI и в INCOIS, а также на встречах с директорами обоих учреждений. Индийские партнеры выразили большое удовлетворение полученными результатами и заинтересованность в продолжении сотрудничества с целью детализации долгосрочных оценок цунами-риска для конкретных береговых районов (залив Хамбхат, где планируется строительство 35-километровой дамбы; места размещения береговых АЭС). Такая детализация требует подключения средств моделирования третьего этапа эволюции цунами — наката на сухой берег, позволяющего получать карты заливания для конкретных бухт и заливов. Такого рода алгоритмический и программный инструментарий уже разработан в ИВТ СОРАН и в настоящее время проходит тестирование на материалах лабораторных экспериментов и наблюдений цунами в Дальневосточном регионе РФ.

Директор INCOIS д-р С.Шеной (S. Shenoi) высказал готовность рассмотреть вопрос о внедрении разработанного участниками проекта программного комплекса для моделирования цунами в систему алгоритмов оперативного центра для выполнения сценарных расчетов распространения цунами в Индийском океане и их воздействия на побережье Индии. В качестве возможного канала для осуществления такого сотрудничества было предложено подготовить предложения для трехсторонней (Индия, Россия, Китай) комиссии экспертов по предотвращению природных бедствий и катастроф (India, Russia and China Trilateral Expert Meeting on Disaster Mitigation and Emergency Prevention), работающей в рамках постоянного трехстороннего совещания министров иностранных дел Индии, России и Китая.

3.7. Степень новизны полученных результатов

Все полученные результаты являются новыми. Особо следует отметить безусловную новизну следующих результатов:

- создание вычислительной методологии и технологического инструментария для численного моделирования возбуждения и распространения цунами на реальных участках акватории Индийского океана;
- построение сейсмотектонической схемы расположения очагов цунамигенных землетрясений в основных сейсмогенных зонах, угрожающих побережью Индии, и выполнение большой серии сценарных расчетов по моделированию волн цунами, порожденных системой модельных очагов, аппроксимирующих основные цунамигенные зоны северной и северо-восточной частей Индийского океана;
- определение максимальных (положительных и отрицательных) амплитуд волн цунами в точках побережья Индии, представляющие расчетную основу для построения обзорной карты цунамирайонирования побережья Индии;
- анализ полученных итоговых гистограмм, показавший, что

- цунамиопасность восточного побережья в целом существенно (в 2-3 раза) выше, чем западного;
- определение мест расположения наиболее опасных для побережья Индии очагов гипотетических цунамигенных землетрясений.

3.8. Сопоставление полученных результатов с мировым уровнем

Созданная в рамках настоящего проекта методология численного моделирования цунами и ее применение для оценки цунамиопасности побережья Индии находятся на самом передовом международном уровне, достигнутом в ведущих научно-исследовательских центрах и университетах, занимающихся проблемой моделирования цунами в таких странах, как США, Япония, Франция, Германия, Австралия, Новая Зеландия. Она основана на применении современных моделей сейсмотектонического процесса в зонах субдукции, передовых расчетных методологий и алгоритмов моделирования возбуждения цунами и его распространения в океане с реальным рельефом дна. Важным преимуществом является наличие в исследовательском коллективе отлаженной технологии выполнения высокозатратных по времени и вычислительным ресурсам численных экспериментов по моделированию цунами, а также специализированных средств визуализации, хранения и анализа результатов выполненных расчетов.

Подтверждением высокого уровня выполненных российскими исполнителями проекта работ служит высказанная руководителем Индийского национального центра информации по океану готовность рассмотреть вопрос о внедрении разработанного участниками проекта программного комплекса для моделирования цунами в систему алгоритмов оперативного центра для выполнения сценарных расчетов распространения цунами в Индийском океане и их воздействия на побережье Индии.

3.9. Методы и подходы, использованные в ходе выполнения проекта

Для описания динамики цунами традиционно используются приближенные модели мелкой воды, базирующиеся на гипотезе малости характерного вертикального масштаба движения по отношению к горизонтальному масштабу. Конкретный вид записи используемой системы уравнений и учет дополнительных факторов (сил Кориолиса, донного трения) определяется в основном целью, характером и пространственным масштабом решаемой задачи. Корректная численная реализация уравнений математической модели и граничных условий на свободных (морских) и отражающих (береговых) границах позволяет, при наличии адекватных батиметрических данных, выполнять расчеты распространения цунами в достаточно сложных по конфигурации береговой линии и распределению глубин расчетных областях, моделирующих реальные акватории Мирового океана. Как показывают результаты тестовых расчетов и сопоставлений численных результатов с аналитическими решениями, данными лабораторных экспериментов и материалами натурных наблюдений, эти модели вполне достоверно воспроизводят характеристики распространяющихся по океану волн цунами и параметры их проявления в прибрежной зоне.

В качестве модели возбуждения цунами при таких расчетах чаще всего используется так называемая «поршневая модель», основанная на

введении в уравнение неразрывности вертикальных движений дна бассейна, отождествляемых с остаточными ко-сейсмическими смещениями дна океана в очаговой области подводного землетрясения. Такие смещения рассчитываются обычно по формулам, выведенным в (Окаda, 1985) и представляющим остаточные (статические) смещения поверхности однородного упругого полупространства под действием внутреннего пространственного источника дислокационного типа. В настоящей работе использованы аналогичные формулы, полученные В. К. Гусяковым (Гусяков, 1978) ранее И.Окады. Несмотря на различия в форме записи итоговых выражений для компонент смещений, полученных в (Окada, 1985; Гусяков, 1978), многочисленные проверки показали полное соответствие значений рассчитанных смещений при любых наборах параметров модельных очагов.

Рассчитанные для плоской границы однородного полупространства смещения накладываются на реальный рельеф дна в очаговой области, при этом возникающими дополнительными возмущениями (например, нарушением стабильности подводных склонов) и вкладом горизонтальной компоненты смещений дна, как правило, пренебрегают. Смещения дна считаются возникшими мгновенно (точнее, в течение одного шага по времени численной схемы), поскольку реальная продолжительность движений в очагах подводных землетрясений (50 – 100 сек, за исключением предельно сильных событий, имеющих существенно более длительный очаговый процесс), все еще мала по сравнению с типичными периодами волн цунами (5 – 15 мин для региональных цунами и до 30 – 40 мин в случае сильнейших трансокеанских цунами). Такой подход к моделированию цунами является в настоящее время общепринятым и применяется в подавляющем большинстве работ по расчетам цунами на конкретных участках акватории Мирового океана, выполняющихся как в России, так и за рубежом.

Представленные в настоящей работе результаты расчетов цунами получены на основе программы STATIC, реализующей предложенный в (Гусяков, 1978) алгоритм расчета остаточных смещений, и программного комплекса МGC (Чубаров и др., 2011; Shokin et al, 2008), реализующего вычислительные схемы типа МакКормака, аппроксимирующие классические уравнения нелинейной системы мелкой воды, записанные в сферической системе координат.

Применение средств численного моделирования для оценки цунамиопасности конкретного побережья начинается с идентификации цунамигенных зон, угрожающих этому побережью, и их аппроксимации очагами модельных землетрясений. Очевидно, что для восточного побережья Индии наибольшую угрозу представляют очаги сильных землетрясений в достаточно протяженной Суматранско-Яванской субдукционной зоне, в то время как для западного побережья опасными являются очаги в существенно более компактной (ограниченной по протяженности) Макранской зоне.

Обе эти зоны аппроксимировались системой модельных очагов с магнитудами $M_W=8.4$ (рис. 1) и $M_W=9.0$ (рис. 2). Первая группа модельных очагов представляет собой наиболее типичные цунамигенные землетрясения, происходящие как в Индийском, так и в других океанах (в

первую очередь, в Тихом океане), то время как вторая представляет предельно сильные мега-землетрясения в зонах субдукции, которые дают наибольший вклад в цунамиопасность практически любого участка побережья Мирового океана (Гусяков, 2013).

Параметры модельных источников выбирались из соображений соответствия сейсмотектоническим особенностям конкретного сейсмогенного региона, вытекающим из концепции поддвига океанических плит под континентальные в районах активных континентальных окраин. При этом азимут простирания плоскости разрыва в большинстве случаев определялся контуром береговой или островной линии, а угол падения площадки разрыва (угол δ) выбирался совпадающим с главной литосферной границей раздела между надвигающейся континентальной и поддвигающейся океанической корой, меняясь в диапазоне от 10° до 45° . Направление подвижки по плоскости разрыва (угол λ) во всех случаях принимался равным 90° , что соответствует наиболее цунамиопасному варианту механизма очага. Глубина залегания верхнего края разрыва задавалась в диапазоне 10-20 км.

В качестве примера получаемых результатов на рис. 8 приведена диаграмма свечения для модельного очага с магнитудой $M_W=9.0$, расположенного в Макранской сейсмогенной зоне (см. врезку на рис. 2). Такие диаграммы показывают пространственное распределение максимумов амплитуд цунами в каждой точке расчетной области, достигнутых за все время расчета, и дают наглядную картину излучения энергии цунами очагом землетрясения и ее дальнейшей эволюции при распространении в океане. На этом рисунке явно виден захват волновой энергии широким шельфом, протягивающимся вдоль западного побережья Индии, с развитием опасных колебаний уровня в ряде береговых пунктов (что фактически наблюдалось при цунами, вызванном Макранским землетрясением 1945 года, имевшим магнитуду $M_W=8.1$).

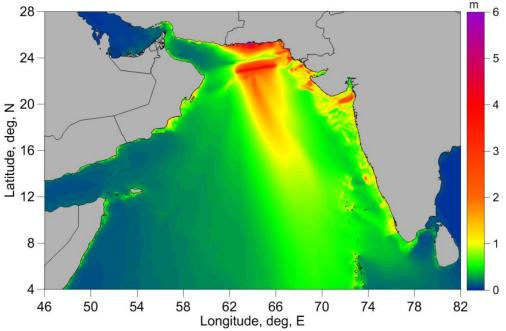


Рис. 8. Диаграмма свечения для модельного очага N^0 1 с магнитудой $M_W = 9.0$, расположенного в Макранской сейсмогенной зоне.

Для выполнения количественного анализа относительной цунамиопасности различных очагов вдоль всего побережья Индии были расставлены 3164 виртуальных мареографа (см. Рис. 9), в которых в процессе расчетов сохранялись полные расчетные мареограммы.



Рис. 9. Схема расположения 3164 виртуальных мареографов вдоль побережья Индии.

Моделирование распространения цунами проводилось в расчетной «индоокеанской» акватории, ограниченной с запада 30° в.д., с востока 130° в.д., с юга 40° ю.ш. и с севера 30° с.ш. на расчетной сетке с шагом 1 угловая минута, построенной с использованием тридцатисекундного батиметрического массива «GEBCO». Все расчеты по моделированию распространения цунами проводились на 24 часа физического времени.

Полученные в ходе сценарных вычислительных экспериментов расчетные материалы послужили основой для анализа цунамиопасности индийского побережья. Полностью результаты этого анализа приведены в подготовленных по итогам второго года выполнения проекта статьях: (Шокин и др., 2014), представленной для опубликования в журнале "Вычислительные технологии", и (Beisel et al., 2014), представленной в журнал NCC Bulletin.

- 3.10.1.1 Количество научных работ, опубликованных в ходе выполнения проекта . 4
- 3.10.1.2 Из них включенных в перечень ВАК
- 3.10.1.3 Из них включенных в системы цитирования (Web of science, Scopus, Web of Knowledge, Astrophysics, PubMed, Mathematics, Chemical Abstracts, Springer, Agris, GeoRef)
- 3.10.1.4 Из них в соавторстве с зарубежным партнером
- 3.10.2. Количество научных работ, подготовленных в ходе выполнения проекта и принятых к печати

- 3.11. Участие в международных научных мероприятиях по тематике проекта, которые проводились при финансовой поддержке Фонда 3
- 3.12. Участие в экспедициях по тематике проекта, проводимых при финансовой поддержке Фонда

 0
- 3.13. Финансовые средства, полученные от РФФИ 550000 руб.
- 3.14. Адреса (полностью) ресурсов в Internet, подготовленных авторами по данному проекту
- 3.15. Библиографический список всех публикаций по проекту за весь период выполнения проекта, в порядке значимости: монографии, статьи в научных изданиях и т.д.
 - 1. Викулин А.В., Мелекесцев И.В, Акманова Д.Р., Иванчин А.Г., Водинчар Г.М., Долгая А.А., Гусяков В.К. Информационновычислительная система моделирования сейсмического и вулканического процессов как основа изучения волновых геодинамических явлений // Вычислительные технологии, 2012, Т.17, №3, 34-54.
 - 2. Denys Dutykh, Dimitrios Mitsotakis, Leonid B. Chubarov, Yuri I. Shokin On the contribution of the horizontal sea-bed displacements into the tsunami generation process // Ocean Modeling. 2012. Vol. 56. P. 43-56 (doi.org/10.1016/j.ocemod.2012.07.002).
 - Gusiakov V.K. Tsunami impact on the African continent: historical cases and hazard evaluation // Extreme Natural Hazards, Disaster Risks and Societal Implications, A. Ismail-Zadeh, J.Fucugaughi, A. Kijko, K. Takeuchi, and I. Zaliapin, Editors, Cambridge University Press, 2014, 225-233.
 - 4. Гусяков В.К. Сильнейшие цунами мирового океана и проблема цунами-районирования морских побережий // Проблемы информатики, 2013, №4, С.36-46.
 - 5. Гусяков В.К. Сильнейшие цунами мирового океана и проблема безопасности морских побережий // // Спецвыпуск ФАО «Катастрофические цунами начала XXI века» Редакторы Б.В.Левин, Е.Н.Пелиновский, 2014 (сдано в печать)
 - 6. Бейзель С.А., Гусяков В.К., Чубаров Л.Б., Шокин Ю.И. Оценка воздействия удаленных цунами на Дальневосточное побережье России основе результатов математического моделирования // Спецвыпуск ФАО «Катастрофические цунами начала XXI века» Редакторы Б.В.Левин, Е.Н.Пелиновский. 2014 (сдано в печать)
 - 7. Шокин Ю.И., Гусяков В.К., Чубаров Л.Б., Бейзель С.А., Сривастава К. Численное моделирование цунами применительно к задаче оценки цунамиопасности побережья Индии // Вычислительные технологии, 2014 (сдано в печать)
 - 8. Beisel S.A., Chubarov L.B., Gusiakov V.K., Shokin Yu.I., Srivastava K. Numerical modeling of tsunami in application to tsunami hazard assessment for the coast of India // Bulletin of the Novosibirsk Computing Center, Series: Mathematical Modeling in Geophysics, 2014, Issue 14 (сдано в печать)

- 3.16. Библиографический список совместных публикаций (в соавторстве с зарубежным партнером по проекту) за весь период выполнения проекта, предшествующий данному отчету, в порядке значимости: монографии, статьи в научных изданиях с указанием импакт-фактора журнала по базе данных Web of Science

 Шокин Ю.И., Гусяков В.К., Чубаров Л.Б., Бейзель С.А., Сривастава К. Численное моделирование цунами применительно к задаче оценки цунамиопасности побережья Индии // Вычислительные технологии, 2014 (сдано в печать).

 Веіsel S.A., Chubarov L.B., Gusiakov V.K., Shokin Yu.I., Srivastava K. Numerical modeling of tsunami in application to tsunami hazard assessment for the coast of India // Bulletin of the Novosibirsk Computing Center, Series: Mathematical Modeling in Geophysics, 2014, Issue 14 (сдано в печать).
- 3.17. Приоритетное направление развития науки, технологий и техники РФ, которому, по мнению исполнителей, соответствуют результаты данного проекта рациональное природопользование
- 3.18. Критическая технология РФ, в которой, по мнению исполнителей, соответствуют результаты данного проекта
 Технологии предупреждения и ликвидации чрезвычайных ситуаций природного и техногенного характера
- 3.19. Основное направление технологической модернизации экономики России, которому, по мнению исполнителей, соответствуют результаты данного проекта не очевидно

Подпись руководителя проекта