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Simulation of surface waves generated by an underwater

landslide in a bounded reservoir

S.A. BEIZEL∗, L. B. CHUBAROV∗, D. DUTYKH∗, G. S. KHAKIMZYANOV∗,
and N.Yu. SHOKINA∗

Abstract — Equations of a landslide motion over an uneven underwater slope subject to gravity and
buoyancy forces, water friction and resistance are presented. A simulation of surface waves generated
by a landslide in a bounded reservoir with a parabolic bottom profile has been performed within the
nonlinear shallow water equations, and the results of that simulation are given. The influence of the
parameters of the motion equation on the maximal splashing size is studied numerically.

The importance of taking into account the landslide mechanism of surface wave
generation in studies of catastrophic events in water areas of various scales is beyond
any doubt [1, 13]. Such mechanism occurred, for example, in the generation of the
tsunami near Papua New Guinea (1998). There are conjectures among the experts
that the landslide effects had a considerable impact on the formation of megatsunami
in 2004 (Sumatra) and in 2011 (Tohoku, Japan).

Some attempts at experimental study of surface waves generated in the motion
of a rigid landslide model over a flat underwater slope have been undertaken recently
[6,9–11,20]. A series of papers considered numerical simulations of such problems
(see, e.g., [3, 9, 16, 19, 20]) using the law describing the motion of a rigid landslide
over a flat slope [12, 15, 20].

Naturally, modelling of real events has to take into account the underwater slope
unevenness. Thus, in [5], an analytic solution to the linear shallow water equations
was obtained for two special forms of an uneven slope under the landslide. The re-
sults of numerical simulation of a landslide motion over an uneven slope consisting
of two flat slopes were described in [18]. In paper [4], an equation was proposed for
a landslide motion over an uneven slope subject to the forces of gravity, buoyancy,
and water resistance. Numerical investigation of particular cases [2] has shown that
the pattern of the surface waves in the motion of a landslide over an uneven bottom
essentially differs from that in the case of a flat slope.

The derivation of the landslide motion equation presented in [4] assumes that the
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540 S. A. Beizel et al.

landslide and the underwater slope are ‘one-dimensional’, i.e., their form depends
only on one spatial coordinate and is constant along the second spatial direction. In
this paper we present the derivation of equations in the general case of the motion
of a spatially nonuniform underwater landslide over a spatially nonuniform under-
water slope. In this case the landslide is represented by a ‘quasi-rigid’ volume of
a continuous medium whose surface form keeps changing according to the slope
unevenness encountered in the course of the movement (as a deformable body),
whereas the horizontal components of the velocity vector are the same at each point
of the landslide (as in a rigid body under translational movement).

We also present the results of numerical experiments for a bounded water reser-
voir with a parabolic form of the bottom. In those experiments we have used the
shallow water model to study the dependence of the characteristics of the generated
waves on the coefficients of friction, resistance, and associated mass, on the density
of the landslide material and its size.

1. Landslide motion equations

We consider a liquid layer bounded from above by a free surface z = η(x,y, t)
and from below by a movable impermeable boundary z = −h(x,y, t) = hbt(x,y)+
hsl(x,y, t), where t is the time and the coordinate system Oxyz is chosen so that x
and y are the horizontal coordinates, z is the vertical one; in this case the plane z= 0
coincides with the surface of the resting fluid. The mobility of the bottom boundary
is caused by the fact that the landslide, whose form is described by a nonnegative
bounded function z = hsl(x,y, t), keeps moving over the impermeable bottom given
by the single-valued function

z = hbt(x,y). (1.1)

Assume that at the initial time moment t = 0 the landslide and the fluid are in
their rest states and the function z = h0sl(x,y) with a finite support D0 describing the

initial form of the landslide is given so that hsl(x,y,0) = h0sl(x,y). The form and the
position of the landslide is determined for t > 0 by the law of its motion. Deriving
the motion equations, we identify the landslide with a material point moving over a
curved surface. However, the force acting onto this point is calculated as an integral
sum of all forces acting onto the elementary volumes of the landslide. Thus, we
take into account the form of the landslide and its position on the uneven slope in
the calculation of the forces.

Therefore, we assume that the position of the landslide at each time moment
is determined by a certain point xxxc(t) = (xc(t),yc(t),zc(t)) sliding along uneven
bottom (1.1) according to the law of non-free motion of a material point over a
given surface

Mẍc = F1, Mÿc = F2, Mz̈c = F3 (1.2)

in this case

zc(t) = hbt (xc(t),yc(t)) (1.3)
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where xc(0) = x0c , yc(0) = y0c ,
(

x0c ,y
0
c

)

∈ D0, zc(0) = z0c = hbt
(

x0c ,y
0
c

)

, F1, F2, F3 are
the components of the force vector FFF which we define later, M = (ρsl +Cwρw)V
is the landslide mass together with the associated mass of water, ρw is the water
density, ρsl is the landslide density (ρsl > ρw),Cw is the coefficient of the associated
mass, V is the landslide volume. The coordinates xc(t), yc(t) can be taken as the
corresponding coordinates of the center of the landslide mass.

Below we assume that for t > 0 the surface of the landslide is described by the
function z = hbt(x,y)+hsl(x,y, t), where

hsl(x,y, t) = h0sl(x+ x0c − xc(t), y+ y0c − yc(t)). (1.4)

Thus, the function hsl(x,y, t) is finite and its support Dt is completely determined by
the support of the function h0sl and the position of the point xxxc(t):

Dt =
{

(x,y)
∣

∣

∣
(x+ x0c − xc(t), y+ y0c − yc(t)) ∈ D0

}

. (1.5)

Note some peculiarities of the proposed physical model of the landslide process.
Formula (1.5) implies that at each time moment t the landslide is positioned on the
slope so that its projection onto the plane z = 0 coincides with the set Dt , which
is obtained by translation of the set D0. This means that all points of the landslide
have the same instant horizontal velocity. However, different points of the landslide
have different velocities in the vertical direction, and the area of the contact of the
landslide with the bottom changes in time. The landslide is stretched out on steep
sections and is shortened on gentle ones (along the slope), which reflects the real
situation to some extent. Thus, when the landslide is moving, its surface is deformed
according to the bottom unevenness and, therefore, we say that the motion of a real
landslide is simulated by the motion of a quasi-rigid body. For a flat slope, this
approach gives not only the same horizontal velocities for all points of the landslide,
but also equal vertical components, i.e., the landslide moves over a flat slope as a
rigid body. It is interesting that the volume of the landslide remains constant despite
its deformation:

V =
∫∫

Dt

hsl(x,y, t)dxdy =
∫∫

D0

h0sl(x,y)dxdy = const. (1.6)

Deriving the landslide motion equations, we assume that surface (1.1) has no
singular points and admits the regular parameterization

x = x(q1,q2), y = y(q1,q2), z = z(q1,q2) (1.7)

where q1 and q2 are the parameters. Then

xc(t) = x(q1(t),q2(t)), yc(t) = y(q1(t),q2(t)), zc(t) = z(q1(t),q2(t)).
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542 S. A. Beizel et al.

In this case (q1(t),q2(t)) is the position of the point xxxc in the parametric space at the
time moment t. Parameterization relations (1.7) imply the following expressions for
the Cartesian velocity components through its contravariant components:

ẋc = xq1 q̇
1 + xq2 q̇

2, ẏc = yq1 q̇
1 + yq2 q̇

2, żc = zq1 q̇
1 + zq2 q̇

2.

Therefore, motion equations (1.2) can be rewritten as

M
d

dt

(

xq1 q̇
1 + xq2 q̇

2
)

= F1, M
d

dt

(

yq1 q̇
1 + yq2 q̇

2
)

= F2, M
d

dt

(

zq1 q̇
1 + zq2 q̇

2
)

= F3.

(1.8)
Multiplying each equation (1.8) by the corresponding component xq1 , yq1 , or zq1

of the vector tangent to surface (1.7) given parametrically and summing the results,
we get the first motion equation

M
d

dt

(

g11q̇
1 +g12q̇

2
)

−M

2

[

(g11)q1
(

q̇1
)2

+2(g12)q1 q̇
1q̇2+(g22)q1

(

q̇2
)2
]

=Fτ1
√
g11

(1.9)
where gαβ (α ,β = 1,2) are the covariant components of the metric tensor of sur-
face (1.1),

g11 = x2
q1

+ y2
q1

+ z2
q1

, g12 = g21 = xq1xq2 + yq1yq2 + zq1zq2

g22 = x2q2 + y2q2 + z2q2 , Fτ1 =FFF ·τττ1

and τττα are the unit vectors tangent to surface (1.7),

τττα =
1√
gαα

(xqα , yqα , zqα )T , α = 1,2. (1.10)

The second motion equation

M
d

dt

(

g21q̇
1 +g22q̇

2
)

−M

2

[

(g11)q2
(

q̇1
)2

+2(g21)q2 q̇
1q̇2+(g22)q2

(

q̇2
)2
]

=Fτ2
√
g22

(1.11)
is obtained similarly, here Fτ2 =FFF ·τττ2.

Now we reduce equations (1.9), (1.11) to a form convenient for numerical in-
tegration. Let v1, v2 be the covariant components of the velocity vector, v1 = q̇1,
v2 = q̇2 be the contravariant components. We have

v1 = g11v
1 +g12v

2, v2 = g21v
1 +g22v

2 (1.12)

v1 = g11v1 +g12v2, v2 = g21v1 +g22v2 (1.13)

where gαβ (α ,β = 1,2) are the contravariant components of the metric tensor of the
bottom surface:

g11 =
g22

G
, g12 = g21 =−g12

G
, g22 =

g11

G
, G= det

(

g11 g12
g12 g22

)

= g11g22−g212.
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In this case, G 6= 0 because of the assumption of the absence of singular points on
surface (1.7).

Using expressions (1.12), (1.13), one can rewrite equations (1.9), (1.11) in the
form of equations for the required functions vα (α = 1,2):

M
dvα

dt
=

M

2

[

(g11)qα
(

v1
)2

+2(g21)qα v
1v2 +(g22)qα

(

v2
)2
]

+Fτα
√
gαα . (1.14)

Since the landslide is in the rest state at the time moment t = 0, we have the follow-
ing initial conditions for system (1.14):

v1(0) = v2(0) = 0. (1.15)

Equations (1.14) are supplemented with the system of ordinary differential equa-
tions

dqα

dt
= vα (1.16)

for determination of the position
(

q1(t),q2(t)
)

of the point xxxc(t) in the parametric
space. In this case the right-hand sides of the latter equations are calculated by
formulas (1.13) through the covariant velocity components, and the initial point
(

q1(0),q2(0)
)

is the preimage of the point xxxc(0) in the parametric space under one-
to-one mapping (1.7).

Parameterization (1.7) of the general form is useful in modelling landslide pro-
cesses in water areas with a complex form of the shore line, for example, in the
cases where a shore line cannot be described by a one-value function of the vari-
ables x or y. To simplify the calculations, we consider further only a simpler case
where the parameterization of surface (1.1) can be done with the use of the Cartesian
coordinates x and y:

x = x1, y = x2, z = hbt(x
1,x2). (1.17)

The contravariant components vα of the velocity vector coincide with the Cartesian
components for this parameterization, therefore, equations (1.14) take the form

M
dvα

dt
=

M

2

[

(g11)xα u
2 +2(g12)xα uv+(g22)xα v

2
]

+Fτα
√
gαα , α = 1,2 (1.18)

in this case u(0) = 0, v(0) = 0, v1 = g11u+g12v, v2 = g12u+g22v,

g11 = 1+

(

∂hbt
∂x

)2

, g12 = g21 =
∂hbt
∂x

· ∂hbt
∂y

, g22 = 1+

(

∂hbt
∂y

)2

and unit vectors (1.10) tangent to surface (1.1) can be represented as

τττ1 =
1√
g11

(

1, 0,
∂hbt
∂x

)T

, τττ2 =
1√
g22

(

0, 1,
∂hbt
∂y

)T

.
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544 S. A. Beizel et al.

The Cauchy problem for equation (1.16) is written in parameterization (1.17) in the
following way:

dxc

dt
= u,

dyc

dt
= v, xc(0) = x0c , yc(0) = y0c (1.19)

where x0c and y0c are the known abscissa and ordinate of the point xxxc(t) at the initial
time moment. The third coordinate is determined from the condition (1.3) specifying
that the point xxxc(t) belongs to surface (1.1).

Now let us clarify the way of the calculation of the forces Fτα from motion
equation (1.18) acting on the material point xxxc(t). In the vertical direction, each
elementary volume of the landslide with the cross-section area dxdy is under the
action of the gravity and buoyancy forces

fff g(x,y) = (0, 0, fg(x,y)) (1.20)

where (x,y) ∈ Dt ,

fg(x,y) = −g(ρsl−ρw)hsl(x,y, t) dxdy (1.21)

g is the acceleration of gravity. Calculate the projections of the force fff g onto the
directions of the tangent vectors τττ1 and τττ2:

fg,τ1 = fff g ·τττ1 =
fg√
g11

∂hbt
∂x

, fg,τ2 = fff g ·τττ2 =
fg√
g22

∂hbt
∂y

and integrate the obtained expressions over the support Dt of the function hsl(x,y, t).
As the result, we get the contribution of the gravity and buoyancy forces into the
components Fτα :

Fg,τα (t) =

∫∫

Dt

fg,τα (x,y, t)dxdy, α = 1,2 . (1.22)

Force (1.22) accelerates the landslide, and its motion slows down due to the
water resistance and the landslide friction over the bottom. The resistance force FFFr

is opposite to the landslide motion. By analogy with [20], assume that the magnitude
fr of this force is proportional to the greatest area Π of the cross-section of the
landslide by a vertical plane perpendicular to the vector (u,v,0)T :

fr =
1

2
CdρwΠv2c (1.23)

where Cd is the water resistance coefficient, vc is the absolute value of the vec-
tor vvvc(t) of the motion velocity of the point xxxc(t), vc = |vvvc| = (g11u

2 + 2g12uv+

g22v
2)1/2. Note that the resistance force FFFr vanishes for vc = 0. If the landslide
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moves, the resistance force is determined subject to the motion direction by the
formula

FFFr = −vvvc

vc
fr

and the projections of this force to the directions of the vectors τττ1 and τττ2 are ex-
pressed as

Fr,τα =FFFr ·τττα = −1

2

CdρwΠ√
gαα

vc (gα1u+gα2v) = −1

2

CdρwΠ√
gαα

vcvα , α = 1,2.

(1.24)
In order to calculate the force of friction, consider again an elementary land-

slide volume with the cross-section area dxdy and mass m = ρslhsl(x,y, t) dxdy. The
force of friction for it is determined according to the normal reaction N acting from
the bottom onto the considered element. Calculate N assuming that the elementary
volume moves according to equations of form (1.8) written for parameterization
(1.17):

m
du

dt
= f1, m

dv

dt
= f2, m

d

dt

(

u
∂hbt
∂x

+ v
∂hbt
∂y

)

= f3.

Multiply the first two equations by −∂hbt/∂x and −∂hbt/∂y, respectively, and add
the obtained expressions to the third equation. We get

−m
∂hbt
∂x

du

dt
−m

∂hbt
∂y

dv

dt
+m

d

dt

(

u
∂hbt
∂x

+ v
∂hbt
∂y

)

= fn
√
G (1.25)

where fn = fff ·nnn, fff = ( f1, f2, f3)
T
, nnn = (n1,n2,n3)

T
is the unit vector normal to

surface (1.1),

n1 = − 1√
G

∂hbt
∂x

, n2 = − 1√
G

∂hbt
∂y

, n3 =
1√
G

. (1.26)

Applying simple transformations to equation (1.25), we get

m√
G

(

u2
∂ 2hbt

∂x2
+2uv

∂ 2hbt

∂x∂y
+ v2

∂ 2hbt

∂y2

)

= fn. (1.27)

The value fn is formed for an elementary landslide volume from the normal
component fff g ·nnn of force (1.20) and the normal reaction N acting onto this volume.

The force of friction is defined as ffr =CfrN =Cfr

(

fn− fff g ·nnn
)

, where Cfr = tanθ∗
is the sliding friction coefficient, θ∗ is the angle of friction, θ∗ > 0. Then formulas
(1.27), (1.20), (1.21), and (1.26) yield the following expression:

ffr =
Cfr√
G

[

g(ρsl−ρw)+ρsl

(

u2
∂ 2hbt

∂x2
+2uv

∂ 2hbt

∂x∂y
+ v2

∂ 2hbt

∂y2

)]

hsl(x,y, t)dxdy

(1.28)
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where u and v are the first two components of the vector vvvc. The friction force vector
FFF fr(t) opposite to the motion is determined by the integration of elementary forces
(1.28) over the set Dt :

FFF fr(t) = −vvvc

vc

∫∫

Dt

ffr(x,y, t)dxdy.

Given the forceFFF fr, one can determine its projections onto the directions of the basis
vectors τττ1 and τττ2:

Ffr,τα =FFF fr ·τττα = − vα√
gααvc

∫∫

Dt

ffr(x,y, t)dxdy, α = 1,2. (1.29)

Note that the calculation of the friction force for vc = 0 (at the initial time mo-
ment and the moments when the landslide stops) is performed by another formula,
which we describe below.

The sums of components (1.22), (1.24), (1.29) are taken for the values Fτα en-
tering the right-hand sides of equations (1.18). Thus, the final form of the landslide
motion equations takes the form

dvα

dt
=

Rα

2
+
[

(γ−1)g
(

I1,α −σαCfrI2

)

−σα

(

γCfr

(

u2I3,11 +2uvI3,12 + v2I3,22
)

+
Cd

2
Πv2c

)]

√
gαα

(γ +Cw)V
, α = 1,2 (1.30)

where γ = ρsl/ρw > 1, Rα = (g11)xα u
2 +2(g12)xα uv+(g22)xα v

2,

I1,α = −
∫∫

Dt

hsl(x,y, t)
√

gαα(x,y)

∂hbt
∂xα

(x,y)dxdy, I2 =
∫∫

Dt

hsl(x,y, t)
√

G(x,y)
dxdy > 0

σα =
vα√
gααvc

, I3,αβ =
∫∫

Dt

hsl(x,y, t)
√

G(x,y)

∂ 2hbt

∂xα∂xβ
(x,y)dxdy, α ,β = 1,2.

Therefore, in order to determine the position of the lower boundary of the liq-
uid, we solve the following problems: using initial data (1.15), we determine the
components vα from system of ordinary differential equations (1.30), the Cartesian
components u, v of the velocity are calculated by formulas (1.13), problem (1.19)
is solved and the coordinates xc(t), yc(t) of the moving point xxxc(t) are calculated,
which allows us to determine the surface of the landslide by formula (1.4) and cal-
culate the lower movable boundary of the fluid at each time moment. All these
calculations are performed until the landslide stop, i.e., until the moment when the
value vc of the landslide velocity turns to zero.

Note that if the landslide has stopped (vc = 0), this does not mean that it com-
pletely stops its motion. For example, a situation is possible where the landslide
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Simulation of surface waves 547

gets a particular speed and moves up the opposite slope of the basin under its own
inertia, then stops and begins the backward motion sliding into the deeper part of
the water area. Obviously, this continuation of the motion is possible only under a
certain proportion between the friction coefficient and the steepness of the slope at
the position where the landslide has stopped. Therefore, in order to solve equations
(1.30) until the moment of the final landslide stopping, it is necessary to check the
criterion of a possible further motion of the landslide after its stop. Let us show what
this criterion looks like.

At the stop moment (and also at the initial time moment) the landslide is un-
der the action of two opposite forces whose vectors lie on the plane of the tangent
vectors τττ1 and τττ2, these are the force FFFg,τ uniquely determined by its projection
(1.22) and the gravity force FFF fr. The resting landslide begins its motion only under
the condition

|FFFg,τ | > |FFF fr| (1.31)

where

FFFg,τ =
Fg,τ1 −Fg,τ2 (τττ1 ·τττ2)

1− (τττ1 ·τττ2)2
τττ1 +

Fg,τ2 −Fg,τ1 (τττ1 ·τττ2)
1− (τττ1 ·τττ2)2

τττ2

FFF fr = −g(ρsl−ρw)CfrI2
FFFg,τ

|FFFg,τ |
.

Taking into account formula (1.22) and equality τττ1 ·τττ2 = g12/
√
g11g22, we get the

following expression for criterion (1.31) of the ability of the landslide to move from
the rest state:

[

g11g22

G

(

I21,1−2
g12√
g11g22

I1,1I1,2 + I21,2

)]1/2

>CfrI2 (1.32)

which means that the tangent component of the resultant of the gravity and buoyancy
forces is greater that the force of friction. It is necessary to check condition (1.32)
at the initial time moment too. If it does not hold, then the landslide mass does not
move from its position.

2. Modelling of tsunami-like waves caused by an underwater
landslide in a reservoir

Describe the bottom relief of the model reservoir by the function

z = hbt(x,y) = hξ +
(

h0−hξ
)

·























(

x−ξ (y)

xsh(y)−ξ (y)

)2

, xsh(y) 6 x 6 ξ (y)

(

x−ξ (y)

Lx−ξ (y)

)2

, ξ (y) 6 x 6 Lx

(2.1)
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548 S. A. Beizel et al.

where x∈ [xsh(y),Lx], y∈ [0,Ly]. The ‘left’ shore (see Fig. 1) is a curvilinear vertical
wall forming a cylindrical surface with the directrix parallel to the axis Oz and the
generatrix given by the equation x = xsh(y), the ‘right’ shore is the flat vertical wall
x = Lx. The water depth in the rest state near these vertical walls is h0 < 0, i.e.,
h0 = hbt(xsh(y),y) = hbt(Lx,y) = const for all y ∈ [0,Ly]. The curve x = ξ (y) is
the isobath corresponding to the maximal depth hξ = const < h0 of the basin, in

this case xsh(y) < ξ (y) < Lx for all y. In each section of surface (2.1) by the plane
y= const we get a flat curve composed of the arcs of two parabolas joined smoothly
at the bottom point with the abscissa x = ξ (y).

Defining in some way the functions ξ (y) and xsh(y), we can get different curved
bottom surfaces. In this paper these surfaces have been given by the formulas

ξ (y) = Cos(y;ξ1,ξ2,yξ ,δξ ) (2.2)

xsh(y) = Cos(y;x1,x2,ysh,δsh) (2.3)

where yξ ∈ (0,Ly), δξ > 0, ysh ∈ (0,Ly), δsh > 0, and the following notation is
used:

Cos(q; p1, p2,q0,δ )=







p1 +
p2− p1

2

[

1+ cos
(2π(q−q0)

δ

)

]

, |q−q0| 6 δ/2

p1, |q−q0| > δ/2.

The bottom surface presented in Fig. 1 and used in numerical experiments was
constructed for the following values of parameters:

h0 = −10m, hξ = −100m, Lx = 500m, Ly = 1000m, ξ1 = 300m, ξ2 = 150m

yξ = Ly/2, δξ = 0.3Ly, x1 = 100m, x2 = 0m, ysh = Ly/2, δsh = 0.4Ly.

The model water area is characterized by a symmetric ‘channel’ with smooth slopes
in its middle part with respect to the axisOy. Assigning zero values to the parameters
x1 and x2 for function (2.3), we get a simpler model water area with a rectilinear
‘left’ shore. If we additionally require the fulfillment of the equalities ξ1 = ξ2 = ξ ,
then the form of function (2.2) implies that the shape of the bottom does not depend
on the variable y. In the latter case for ξ = Lx/2 we get the simplest shape of the
bottom, which is a cylindrical surface with the generatrix described by the parabolic
arc

z = hbt(x) =
(

h0−hξ
)

(

x

ξ
−1

)2

+hξ (2.4)

and the directrix parallel to the axis Oy.

Figure 1 shows the trajectories of the landslide motion for two different forms
of its initial position. The initial form of the landslide is specified by the formula

h0sl(x,y) = T ·Cos(x;0,1,x0c ,bx) ·Cos(y;0,1,y0c ,by)
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Figure 1. Landslide motion trajectory for two different start positions: 1— x0c = 91.5 m, y0c = 620 m;

2— x0c = 115.2 m, y0c = 660 m.

where x0c , y
0
c are the given abscissa and ordinate of the top of the landslide for t = 0,

T is the depth of the landslide, bx, by are its lengths along the axes Ox and Oy,
respectively.

The volume of the model landslide is determined by formula (1.6):V = Tbxby/4.
According to (1.5), the support of the function hsl(x,y, t) is the rectangle

Dt =
[

xc(t)−
bx

2
, xc(t)+

bx

2

]

×
[

yc(t)−
by

2
, yc(t)+

by

2

]

therefore, it is not difficult to calculate the value of Π from formula (1.23). It de-
pends on the values of the first two components u and v of the velocity vector vvvc(t)
and is calculated by the following formulas. If one of the components equals zero,
then we assume

Π =
T

2

{

bx, u = 0, v 6= 0

by, u 6= 0, v = 0.

If both components are distinct from zero, then the calculations are performed by
the formulas

Π =
T

4



































√

b2x +(kby)
2

[

1+
sinπk

πk(1− k2)

]

, |k| < 1

√

(bxk1)
2 +b2y

[

1+
sinπk1

πk1
(

1− k21

)

]

, |k| > 1

3

2

√

b2x +b2y, |k| = 1
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(a) (b)

(c) (d)

Figure 2. Graph of maximal amplitude values for the total calculation time (a) and graphs of the free
surface z = η(x,y,t) at time moments t = 9.9 s (b), 14.8 s (c), 19.8 s (d).

where

k =
ubx

vby
, k1 =

1

k
, u 6= 0, v 6= 0.

In the calculation of the trajectories shown in Fig. 1, the thickness T of the
landslide was taken equal to 10 m, the length bx was 50 m, by was 50 m. The point

xxxc(0) was given by the coordinates y0c , z
0
c = −30 m, and the third one was obtained

from the condition that the point belongs to surface (2.1). Motion trajectory 1 was
obtained for y0c = ysh + 0.3δsh, 2 was obtained for y0c = ysh + 0.4δsh, therefore, in
the first case we have the value

x0c = ξ (y0c)+
(

xsh(y
0
c)−ξ (y0c)

)

√

z0c −hξ

h0−hξ
≈ 91.5 m

and in the second case we have the value x0c ≈ 115.2 m. The values of the other
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parameters entering motion law (1.30) were the following: γ = 2, Cw = 1, θ∗ = 5◦,
Cd = 1.

Figure 1 shows that the landslide moves from the edge of the channel to in-
creasing depths, then it moves under its own inertia up to a local bottom elevation
positioned before the channel, and after that it slides down from this elevation in
different directions for two variants 1 and 2. Varying the governing parameters, we
can get other interesting trajectories of the landslide motion, especially for small
angles of friction θ∗. Thus, the model water area chosen here allows us to consider
complex curvilinear motions of landslides and to study waves generated by them.

The general notion of the wave process generated by a landslide motion can be
obtained by the glow pattern, which is a spatial distribution of the maximal values of
the amplitudes for the whole calculation period (see Fig. 2a). This pattern shows that
the main part of the wave energy is directed to the initial movement of the landslide
and hence the maximal splashes onto the shore line are observed in this direction.
The case of the landslide starting from the point marked by digit 1 in Fig. 1 was
numerically simulated for the critical parameters indicated above with the use of
the MacCormac scheme on a uniform grid within the systematic nonlinear shallow
water model. The nonpercolation condition was posed on the ‘left’, x = xsh(y) and
‘right’, x= Lx shores of the reservoir, the condition of free wave passage was posed
on the other two boundaries y = 0 and y = Ly.

Figures 2b–2d demonstrate the evolution of the surface wave process. It is seen
that at the initial moment of the landslide movement a positive wave is generated,
this wave spreads in all directions and passes ahead of the landslide moving at a
subcritical velocity. A negative escort wave is observed over the landslide during its
total motion, two positive ‘splashes’ are also observed over its front and back. In
contrast to the leading positive wave mentioned above, which does not depend on
the landslide and its motion characteristics except for the moment of its generation,
the amplitudes of these ‘escorts’ are completely determined by the landslide motion
velocity and the depth of its current position. The smaller the velocity and the greater
the depth, the lower the height of those waves and vise versa. As the waves spread,
they start interacting with the bottom unevenness and the shore lines.

3. ‘One-dimensional’ landslide motion equation

A complicated pattern of the wave modes in a landslide motion over a spatially
uneven slope of a reservoir and the difficulties in interpreting the results obtained
under varying a large number of parameters make the study of wave generation
necessary and useful even in the simpler case where the form of the landslide and
the bottom configuration do not depend on one of the horizontal coordinates.

Thus, let bottom relief (1.1) and form of landslide (1.4) not depend, for instance,
on the coordinate y and be described by the functions

z = hbt(x) (3.1)

z = hsl(x, t) = h0sl(x+ x0c − xc(t)). (3.2)
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Then the landslide moves parallel to the plane xOz (v≡ 0) and the following equal-
ities hold:

∂hbt
∂y

≡ 0, g12 = g21 ≡ 0, g22 ≡ 1, G = g11

v1 = g11u, vc =
√
g11 |u|, Π = Tby

where T is the maximal landslide thickness in the vertical direction. The motion of
the landslide is described by the first equation of (1.30), which takes the following
simpler form in the case considered here:

d

dt
(g11u) =

R

2
+

[

(γ−1)g
(

I1−σCfrI2

)

−σ
(

γCfrI3u
2 +

Cd

2
Tbyv

2
c

)

] √
g11

(γ +Cw)V
(3.3)

where σ = sign u, R = g ′
11u

2, g ′
11 = dg11/dx, g11 = 1+(h′bt)

2
, h′bt = dhbt/dx, and

for the sake of brevity, the values I1,1 and I3,11 are redenoted by I1 and I3.
The independence of functions (3.2) of the variable y leads to a particular form

of the sets D0 and Dt :

D0 =
[

xl(0), xr(0)
]

×
[

yl , yr
]

, Dt =
[

xl(t), xr(t)
]

×
[

yl , yr
]

and for all t > 0 the following conditions hold: xc(t) ∈ (xl(t), xr(t)), yc(t) ≡ y0c ∈
(yl , yr), yr = yl + by, xl(t) = xl(0) + xc(t)− x0c , xr(t) = xl(t) + bx. Thus, in the
case of ‘one-dimensional’ motion of the landslide considered here its volume (1.6)
is determined by the formulaV = byS0, where S0 is the cross-section of the landslide
by a plane perpendicular to the axis Oy and this section does not depend on y,

S0 =

xr(t)
∫

xl(t)

hsl(x, t) dx =

xr(t)
∫

xl(t)

h0sl(x+ x0c − xc(t)) dx =

xr(0)
∫

xl(0)

h0sl(x) dx = const.

The integrals in equation (3.3) can be represented as

I1 = by

xr(t)
∫

xl(t)

hsl(x, t)sinθ(x)dx, I2 = by

xr(t)
∫

xl (t)

hsl(x, t)cosθ(x)dx

I3 = by

xr(t)
∫

xl(t)

hsl(x, t)
h′′bt(x)√
g11

dx,

where θ(x) = −arctanh′bt(x) is local bottom inclination angle (3.1),

tanθ(x) = −h′bt(x), sinθ(x) = −h′bt(x)√
g11

, cosθ(x) =
1√
g11

.
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The formulas presented here imply that the motion law of the point xxxc(t) does
not depend on the width of the landslide by.

From nonlinear ordinary differential equation (3.3) with the use of the initial
conditions

xc(0) = x0c , u(0) = 0 (3.4)

taking into account the notation u = ẋc, we can calculate the abscissa xc(t) of the
moving point xxxc(t) and thus obtain the surface of the landslide from formula (3.2)
and determine the lower moving boundary of the fluid at each time moment.

It is not difficult to check that for the flat slope

z = hbt(x) = h0− x tanθ , x > 0, θ = const

equation (3.3) is written in the form of the equation given in [11]. Moreover, in the
case of a flat slope one can easily write the exact solution to problem (3.3), (3.4).

For a curvilinear bottom profile, the solution to problem (3.3), (3.4) can be cal-
culated with the use of numerical integration methods. Figure 3a shows the abscissa
(line 3) of the top of the landslide having the initial form

h0sl(x,y) = T ·Cos(x;0,1,x0c ,bx) (3.5)

and moving over an uneven bottom with the profile shaped as a parabolic arc (2.4).
In these calculations we used the following values of the parameters responsible for
the bottom form: hξ =−100 m, h0 =−10 m, ξ = 250 m. On the sides (at the points
x = 0 and x = 500), the reservoir is bounded by vertical impermeable walls. At the
initial time moment the top of the landslide is above the bottom point corresponding
to the depth z0c = −30 m, therefore,

x0c = ξ

(

1−
√

z0c −hξ

h0−hξ

)

≈ 29.5 m.

The values of the parameters of motion equation (3.3) were the following:

T = 10 m, bx = 50 m, γ = 2, Cw = 1, θ∗ = 5◦, Cd = 1. (3.6)

It is worth noting that landslide (3.2), (3.5) satisfies the formula S0 = Tb/2
and the value T is a linear multiplier in the integrals I1, I2, I3 from equation (3.3),
therefore, it is canceled and the motion law of the landslide does not change under
a variation in its thickness T .

The analysis of the graph of the function xc(t) (line 3 in Fig. 3a) shows that
for these values of the parameters the landslide goes over the point x = ξ of the
greatest depth and moves up the opposite slope under its own inertia, then it stops
and moves back a little and finally stops slightly lower than the point of its first
stop. More complicated landslide motion trajectories with several changes of the
motion direction may occur for a small coefficient of friction (see Fig. 3a, line 4
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Figure 3. Landslide motion over an uneven bottom of the model reservoir. (a): 1, 2 form of landslide
at the initial time moment (1) and at the stop moment for θ∗ = 5◦ (2); 3, 4 graphs of the function
x = xc(t) for θ∗ = 5◦ (3) and θ∗ = 1◦ (4); (b): graphs of the function x = xc(t) (1) and the dependence
of the Froude number Fr on the coordinate xc(t) (2) for θ∗ = 1◦.

corresponding to θ∗ = 1◦). Nevertheless, even for very small values of the coefficient
of friction, the motion of the landslide over bottom (2.4) proceeds at subcritical
velocities (see line 2 in Fig. 3b representing the dependence of the local Froude

number Fr = vc(xc)/
√

ghbt(xc) of the abscissa xc(t) of the moving point xxxc(t)).
Recall also that we should check stopping criterion (1.32) at each stop moment, and
in the one-dimensional case this criterion takes the form of the inequality

|I1| >CfrI2. (3.7)

Condition (3.7) should be checked at the initial time moment too. The landslide
mass with initial form (3.5) lying on uneven bottom (2.4) does not leave its place
for the values of bx and z0c indicated above if θ∗ > 32.5◦.

4. Some results of calculations

Numerical simulation of surface waves generated by landslide motion (3.5) over a
slope of parabolic form (2.4) has been performed within the nonlinear shallow water
model using a predictor-corrector scheme of the second order of approximation [17]
on an adaptive grid. The grid was constructed by the method of equidistribution [14]
with the use of a control function tracing movable elevations and troughs of the
waves.

For a bounded reservoir we have the following wave pattern generated by a land-
slide. A solitary wave is gradually formed on the water surface before the speeding-
up landslide. This wave moves toward increasing depth at a speed exceeding that
of the landslide. Just over the moving landslide the free boundary has the form of
a negative wave, i.e., a ‘trough’ going away from the shore together with the land-
slide (see Fig. 4a). The front rise wave is reflected from the opposite shore and goes
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(a) (b)

(c) (d)

Figure 4. Graph of the surface z = η(x,t) (a) and graphs of dependences of the maximal splashing R
on the length b and height T of the underwater landslide (b), on the resistance coefficient Cd and the
angle of friction θ∗ (c), on the coefficient of associated massCw and relative density of landslide mass
γ (d).

through the reservoir in the reverse direction. It interacts with the ‘trough’ and then
goes onto the waterside slope from which the landslide has slid. A solitary wave of
a considerable amplitude is formed after the reflections from the opposite shores,
such wave may pass across the reservoir many times. In this case, for parabolic bot-
tom (2.4) we get similar values of the maximal splashes on the opposite shores of
the reservoir.

Below we present the results of studies clarifying the rate of influence of the
parameters T , b = bx, γ , Cw, θ∗, Cd on the value R of the maximal splashing onto
the ‘right’ shore of the reservoir (x = 500 m). In this case we varied the values of a
pair of parameters and fixed the values of the other parameters taken as in (3.6); in
all experiments we used the constant values of hξ , h0, ξ , and z0c indicated above.
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Figure 4b shows the surface R = R(b,T ) characterizing the effect of the land-
slide size (b = 10÷ 55 m, T = 1÷ 12 m) and hence its volume V on the maximal
splash. We have indicated above that the model landslide considered here has the
motion law not dependent on the value of T . However, the amplitude of the gen-
erated waves essentially depends on the parameter T , it grows with an increasing
landslide thickness. A variation of b for the constant values (3.6) of the other pa-
rameters affects the motion law so that a longer landslide moves at a greater speed
and thus generates stronger surface waves. Therefore, an increase in the length b
of the landslide causes the same qualitative changes in the splashing values as an
increase in its thickness T . Note that the critical effect on the value of R is caused
by the motion of the landslide in the shallow part of the water area, whereas in the
descent of the landslide into the zone of large depths, the energy transmission from
the moving landslide to the surface waves practically stops. Since the influence of
the landslide volume on the amplitude of the generated waves becomes apparent
from the very beginning of the motion even in the shallow part and the speed of
its motion increases with the growth of the volume, the size of the landslide is an
important determinant factor in the estimation of the splashing values on the shores
of the reservoir.

Figure 4c demonstrates the dependence of the maximal splash R on the parame-
ters responsible for deceleration of the landslide that are difficult to determine, i.e.,
the coefficient of friction Cd and the angle of friction θ∗. It can be seen that for a
sufficiently wide range of these parameters (Cd = 0.5÷ 2, θ∗ = 1÷ 10◦) their in-
fluence on R is weaker than the variation of the volume. The analysis of landslide
motion trajectories shows that the route and the velocity of the landslide decrease
with an increase of friction. For small θ∗ the velocity of the landslide is greater, but
it goes faster into the depth where its movement has little effect on the process of
wave generation, as was indicated above. As seen from Fig.4c, the variation of the
hydrodynamic resistance coefficient Cd has an even weaker influence on the splash-
ing values. This relates to the fact that the variation of this coefficient is significant
for large landslide velocities, and the latter are realized in the zone of large depths.

It is seen from Fig. 4d that among the two parametersCw and γ characterizing the
moving landslide mass, the variation of the first one (Cw = 0.5÷2) slightly affects
the maximal splash R, but the second one (γ = 1.2÷2.9) has an essential influence.
The latter relates to the fact that a landslide having a larger relative density can get
a considerable speed even in the shallow part of the water area, which results in the
generation of high surface waves.

Summarizing, we can say that among all parameters of the landslide motion
equation (3.3) the most essential influence on the maximal splash values is caused
by the landslide size and its density, i.e., the parameters easily estimated in field
measurements. Large volumes of the landslide mass moving in shallow zones gen-
erate high surface waves producing big splashes and flooding the shore.
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Conclusion

In this paper we derive motion equations for a ‘quasi-rigid’ landslide moving over
an uneven spatially inhomogeneous underwater slope and, considering the shallow
water model, study numerically the influence of the parameters of the motion law
on the maximal shore splashing of surface waves generated by a landslide in the
case of a bounded reservoir. Thus, we show that among all parameters considered in
the paper, the size and density of the landslide cause the main effect on the maximal
splash value, i.e., these are the parameters which can be estimated in field studies
with a sufficient accuracy. At the same time, such parameters as the coefficients of
associated mass and hydrodynamic resistance and also the angle of friction that are
hard to estimate do not practically affect the value of splashing on the shore for a
wide range of variations.

It is worth noting that dangerous underwater landslides are the most probable
only in deep reservoirs with steep waterside slopes. Therefore, the shallow wa-
ter theory in its long-wave approximation can give only approximate estimates of
splashing for such reservoirs. Test calculations based on the complete equations of
wave hydrodynamics show that a landslide generates not just one, but a series of
comparatively short surface waves moving to the shore at a lower speed than the
waves in the nonlinear shallow water model and hence give lower values of maxi-
mal splashing. Thus, the use of the shallow water model of the first approximation
leads to overestimation of the maximal splashing onto the shores of a deep bounded
reservoir and requires taking into account the dispersive effects, in order to obtain
a more accurate estimate. In this context, we plan to undertake a multiparametric
study of surface waves generated by a landslide within nonlinear-dispersive models
of wave hydrodynamics [3, 7, 8, 16].
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