Российская академия наук

Сибирское отделение

Институт вычислительных технологий

"УТВЕРЖДАЮ" Директор ИВТ СО РАН

академик _____ Ю. И. Шокин

21 мая 2007 года

«Расчет высот волн цунами для защищаемых пунктов Курило-Камчатского региона»

ПРОМЕЖУТОЧНЫЙ ИНФОРМАЦИОННЫЙ ОТЧЕТ

на выполнение НИОКР для государственных нужд по

Федеральной целевой программе

"Снижение рисков и смягчение последствий чрезвычайных ситуаций

природного и техногенного характера

в Российской Федерации до 2010 года "

(контракт № 1н-07 от 22 марта 2007 г.)

Руководитель работ г.н.с., д.ф.-м.н., профессор

_____ Л. Б. Чубаров

Новосибирск, 2007 г.

Исполнители:

ст.н.с., к.ф.-м.н. программист

аспирант

программист

З.И.ФедотоваВ.В.СмирновВ.В.БабайловС.А.Бейзель

1. Введение	3
2. Краткий обзор поставленной задачи	4
3. Концепция предлагаемого решения	12
4. Предлагаемое решение	12
База данных элементарных моделей очагов.	13
Модуль генерации начального возмущения	13
База данных источников.	14
База данных истории землетрясений	16
Вычислительный модуль.	16
Батиметрия.	16
Модуль визуализации.	16
Управляющий модуль.	16
База данных результатов расчетов	17
База данных защищаемых пунктов	17
Пользовательский интерфейс системы.	18
Информационная система по источникам возникновения цунами Tsunan	niGIS®18
Функциональные возможности картографического интерфейса	19
5. Этапы разработки системы	20
6. О выборе математических моделей.	
7. О результатах предварительных вычислительных экспериментов	34

1. Введение

ПРОМЕЖУТОЧНЫЙ ИНФОРМАЦИОННЫЙ ОТЧЕТ, согласно календарному плану, посвящен формулировке и краткому обоснованию основных принципов, на которых базируется разработка структуры алгоритмического обеспечения для Расчета высот волн цунами для защищаемых пунктов Курило-Камчатского региона. В отчете дан анализ основных требований к разрабатываемой системе, на основе которых предполагается стоить план дальнейшей разработки системы.

2. Краткий обзор поставленной задачи

Исходная задача состоит в создании базы данных с максимальными значениями уровней свободной поверхности воды в заданном наборе защищаемых пунктов, расположенных на побережье Камчатского полуострова и прилегающих островах.

База данных должна быть создана на основе численных расчетов распространения цунами, возникших в результате потенциально опасных цунамигенных землетрясений в Камчатском регионе. В рамках решения задачи подразумевается создание программного обеспечения для быстрого и удобного доступа к построенной базе данных; использование надежных и адаптированных к особенностям поставленной задачи вычислительных алгоритмов для расчета распространения цунами и моделирования процессов генерации волн цунами в области землетрясения

При разработке проекта системы был учтен опыт успешно функционирующей вот уже почти 10 лет аналогичной по своему назначению системы Японского Метеорологического Агентства (далее – ЯМА).

Со второй половины 90-х годов ЯМА начала широкомасштабные работы по внедрения количественных методов прогнозирования ожидаемых высот цунами. Эта новая система прогнозов была введена в опытную эксплуатацию в апреле 1999 года. Прогнозирование осуществляется на основании специально созданной базы данных, включающей около 1000 элементов (элементарных моделей очагов), распределенных в соответствии с сейсмотектоническими особенностями акватории в узлах достаточно густой сетки вокруг японских островов (Handbook, 2001).

Для получения этой базы использовался достаточно стандартный метод расчета распространения цунами на реальном рельефе дна от пространственной дислокационной модели очага землетрясения. Такая модель характеризуется семью параметрами:

- Длиной разрыва *L* (км),
- Шириной разрыва W (км),
- Глубиной верхнего края разрыва d (км),

- Азимутом простирания разрыва ψ ,
- Углом падения разрыва δ ,
- Направлением подвижки в плоскости разрыва λ ,
- Величиной подвижки *D*(м).

Значения параметров *L*, *W* и *D* выводятся из корреляционных соотношений с магнитудой землетрясения, инструментально определенная глубина гипоцентра считается соответствующей середине разлома, углы δ и λ считаются фиксированными и равными 45° и 90°, соответственно, угол ψ принимается равным углу простирания глубоководной впадины или ориентации береговой линии в районе очага землетрясения.

Вычисленные формулам М.Окады (Okada, 1985) смещения по дна В эпицентральной области землетрясения используются в качестве начальных данных для задачи распространения цунами, которая решается разностным методом в рамках линейной модели мелкой воды. Ожидаемые высоты цунами от каждого элементарного очага вычисляются для набора точек (Forecasting Grid Points), находящихся на достаточно глубокой воде, с тем, чтобы обеспечить применимость линейной модели, затем полученные амплитуды пересчитываются на прибрежные точки с использованием широко известной формулы Грина. При этом непосредственно в момент обработки данных о происходящем землетрясении никакие численные расчеты не производятся, а выполняется просто выборка значений высот волн в заданных точках из предварительно созданной базы данных (Tsunami Forecast Database), содержащей до 300,000 значений предварительно вычисленных высот от элементарных очагов, распределенных по определенному закону в акватории, окружающей японские острова. На основании многочисленных тестовых расчетов ЯМА пришла к выводу, что такой подход позволяет осуществить более точное прогнозирование ожидаемых высот волн на конкретных участках побережья, по сравнению с использовавшимся ранееэмпирическим методом, основанным на корреляции высот цунами с амплитудами сейсмических волн на определенном расстоянии от очага землетрясения.

Рисунок 1. Распределение модельных очагов землетрясений вокруг Японских островов.

В настоящей работе в качестве модели очага используется практически эквивалентная модель В.К.Гусякова, разработанная им в середине 1970-х годов и успешно зарекомендовавшая себя в многочисленных прикладных и фундаментальных исследованиях. Следует отметить также, что на тестовых задачах различие в результатах этих моделей не выходит за пределы ошибок округления, определяющихся особенностями используемых вычислительных устройств.

Безусловным достоинством модели В.К.Гусякова, определившим упомянутый выше выбор, является непосредственное участие разработчика в проекте, а следовательно и доступность кодов, гибкость настроек алгоритмов и программы, абсолютное понимание существа дела и следующая из этого надежность принятого подхода.

В приведенной ниже таблице 1 перечислены указанные Заказчиком *защищаемые пункты*, их«исходные» географические координаты, их целочисленные координаты в терминах номеров узлов выбранного Исполнителем фрагмента 1-минутной сетки, соответствующие им физические координаты, отклонение этих значений от «исходных» и значения глубин. Анализ таблицы показывает, что выбранная детальность расчета позволила достаточно точно аппроксимировать локализацию защищаемых пунктов за исключением пункта «Петропавловский маяк», координаты которого требуют уточнения

Таблица 1.

	name	Phi-0	Psi-0	i	j	phi	psi	d-phi	d-psi	D-ij-calc
1.	Okeanskij (o. Paramushir)	155.8	50.2	171	194	155.836	50.220	-0.036	-0.02	7.628
2.	g. Severo-Kuril'sk	156.2	50.68	192	221	156.19	50.67	0.01	0.01	5.449
3.	Babushkino (o. Shumshu)	156.42	50.63	206	219	156.420	50.637	0	-0.007	5.716
4.	GMS m. Lopatka	156.67	50.87	220	233	156.653	50.871	0.017	-0.001	5.439
5.	KNP m. Zheltvi	157.7	51.63	283	273	157.7	51.54	0	0.09	5.649
6.	GMS Vodopadnaja	158.07	51.83	305	288	158.07	51.79	0	0.04	16.855
7.	RSB buhta Hodutka	158.08	51.77	305	288	158.07	51.79	0.01	-0.02	16.855
8.	RSB buhta Asacha	158.3	52.13	320	308	158.32	52.12	-0.02	0.01	6.628
9.	RSB buhta Zhirovaia	158.43	52.6	327	337	158.44	52.61	-0.01	-0.01	13.122
10.	Buhta Russkaja (mys	158.5	52.43	331	327	158.50	52.44			16.174
	Vhodnoj)				-		-	0	-0.01	-
11.	RSB buhta Listvinichnaia	158.57	52.33	335	321	158.57	52.34			12.495
	(mys Povorotnyj)							0	-0.01	
12.	RSB buhta Bol'shaja	158.57	52.77	335	347	158.57	52.77			3.519
	Sarannaja(mys Sarannyj)							0	0	
13.	g. Petropavlovsk-	158.58	53.02	336	362	158.59	53.02			3.975
	Kamchatskij							-0.01	0	
14.	vhod v Avachin. Buhtu	158.7	52.9	343	353	158.70	52.87			4.924
	(Mys majachnyj)							0	0.03	
15.	Petropavlovskij majak	158.72	53.02	343	362	158.72	53.02	θ	θ	-78.577
16.	byvshee selo Halaktyrka	158.87	53	353	360	158.87	53.0	0	0	5.974
17.	RSB ust'e r. Nalychevo	159.25	53.02	376	369	159.25	53.14	0	-0.12	6.252
18.	RSB ust'e r. Ostrovnaja	159.55	53.25	395	375	159.57	53.24	-0.02	0.01	0.659
19.	RSB ust'e r. Berezovaja	159.85	53.83	412	410	159.86	53.82	-0.01	0.01	2.033
20.	RSB ust'e r. Zhupanovo	159.87	53.67	413	401	159.87	53.67	0	0	1.801
21.	RSB ust'e r. Karymskaja	159.88	53.97	416	419	159.92	53.97	-0.04	0	3.626
22.	RSB buhta Bol'shaja	159.95	53.33	418	381	159.96	53.34			18.331
	Medvezhka							-0.01	-0.01	
23.	GMS Semjachik	159.98	54.1	421	427	160.0	54.1	-0.02	0	4.345
24.	Kordon Zhupanovo	159.98	54.12	421	428	160.0	54.12	-0.02	0	2.714
25.	GMS Kronoki /buhta	161.2	54.62	491	455	161.17	54.58			3.198
	Ol'ga/							0.03	0.04	
26.	Mys Kozlova	161.7	54.5	523	450	161.71	54.49	-0.01	0.01	24.693
27.	RSB ust'e r. Storozh	161.73	55.4	524	504	161.72	55.39	0.01	0.01	1.102
28.	Ust'e r. Bol'shaja	161.87	55.07	533	485	161.87	55.076			0.950
	Chazhma							0	-0.006	
29.	Selo Hajljulja	162	58.15	541	669	162.0	58.146	0	0.004	0.675
30.	Majak mys Kronockij	162.13	54.75	550	466	162.157	54.76	-0.027	-0.01	17.171
31.	Selo Uka	162.14	57.92	548	654	162.12	57.9	0.02	0.02	3.991
32.	Mys Kamenistyj	162.15	54.83	550	470	162.157	54.83	-0.007	0	6.441
33.	Selo Ivaschka	162.27	58.54	558	693	162.29	58.55	-0.02	-0.01	0.116
34.	Selo Pankara	162.34	58.6	561	696	162.34	58.6	0	0	1.036
35.	Ust'Kamchatsk	162.47	56.27	569	553	162.47	56.21	0	0.06	3.044
36.	Selo Dranka	162.58	58.76	577	706	162.61	58.76	-0.03	0	2.839
37.	Selo Makar'evskoe	162.74	58.86	590	712	162.82	58.86	-0.08	0	2.877
38.	RSB ust'e r. Ozernaja	162.78	57.37	589	622	162.81	57.36	-0.03	0.01	3.342
39.	Ossora	163.08	59.3	606	735	163.09	59.25	-0.01	0.05	4.833
40.	Poselok Ossora	163.09	59.3	606	/35	163.09	59.25	0	0.05	4.833
41.	Selo Tymlat	163.2	59.48	613	750	163.21	59.49	-0.01	-0.01	0.515
42.	Selo Kostroma	163.21	59.17	613	730	163.21	59.16	0	0.01	1.003
43.		163.22	59.49	614	750	103.23	59.497	-0.01	-0.007	3.012
44.		103.23	01.0 56.07	610	030	103.24	0/.0	-0.01	0	22.814
40.	GNS III. AITIKa	103.33	50.27	622	557 770	163.30	50.20	-0.03	-0.01	24.942
40.	Selo Krasnoe	163.45	59.85	628	770	163.46	59.83	-0.01	0.02	8.246
47.		163.51	59.70	027	704	163.44	59.63	0.07	-0.05	4.371
40.		163.33	50.00	041	704	103.00	50.73	-0.13	0.13	2.752
49.	Selo Anapka	163.75	59.94	652	710	163.76	59.95	-0.03	-0.01	2.700
50.	rybozavod	103.07	50.97	052	119	103.00	50.90	0.01	-0.01	2.520
51	Poselok Il'nyrekii	164 28	50 07	677	778	164.28	50.06	0.01	0.01	3 055
57	Selo Ol'hovaia	16/ /5	60.07	687	786	164 14	60.1	0.01	_0.01	3 250
52	Selo Peschanoe	16/ 66	50.07	700	780	164.66	50.00	0.01	-0.03	5.209
53.	Mys Il'ninskii	164.88	50 72	713	767	164 877	59.390	0 003	-0.090	8.054
55	Selo Geka	165 25	60.08	735	785	165.24	60.08	0.003	0.00	1 396
56	Selo Vivienka	165.20	60.00	751	701	165.24	60.00	0.01	-0.05	2 675
57	Selo Medvezhka	165 75	60.28	765	795	165 74	60.25	0.01	0.03	3 908
58	Nikol'skoe	165.98	55.2	779	491	165.98	55 18	0.01	0.00	5.327
59	Korf	166	60.37	781	802	166.01	60.36	-0.01	0.02	1.187
60	Selo Oliutorka	166 1	60.31	781	802	166.01	60.36	0.09	-0.05	1 187
61	Selo Telichiki	166 11	60 44	787	805	166 11	60 41	0.00	0.00	3.508
62	Selo Kultushino	166.26	60.47	796	807	166.26	60.45	0	0.02	5.365
63	GMS buhta Lavrova	167.09	60.33	846	798	167.095	60.298	-0.005	0.032	6.197

Расположение защищаемых пунктов представлено также на рисунке 2.

Рисунок 2. Карта расположения защищаемых пунктов на побережье Камчатки.

Следует указать, что по результатам предварительного анализа исторических данных о цунами в акватории полуострова Камчатка в качестве базовой акватории для выполнения работ был выбран район, простирающийся по долготе от 153 до 173 градусов Восточной долготы и по широте от 47 до 62 градусов Северной широты: Изображение рельефа дна и суши исследуемого фрагмента представлено на рисунке 3.

Рисунок 3. Рельеф дна и суши исследуемой акватории Исторический анализ и определение размещения событий, связанных с проявлениями сейсмической и цунамической активности выполнялись с использованием информационной системы WinITDB и представлены на рисунке 4:

Рисунок 4. Карта сейсмичности и очагов исторических цунами

На основе предварительного анализа была выделена зона вероятного расположения критических очагов цунами (рисунок 5).

Принимая за основу методику, близкую японской, разработчики приступили к серьезной работе по адаптации этой методики к специфическим условиям Камчатки т особенностям локальной сейсмо-тектонической обстановки.

Рисунок 5. Возможный начальный вариант размещения очагов.

Широкую внешнюю полосу можно составить из элементарных очаговс L=100 и W=100 км с углом наклона $\delta = 30^{\circ}$ и углом подвижки $\lambda = 90^{\circ}$ (т.е. пологий поддвиг под континент). Если взять модуль упругости $\mu = 5 \cdot 10^{20} \frac{H}{m^2}$, то при подвижке $D_0 = 1$ м получим сейсмический момент $M_0 = 5 \cdot 10^{20} Hm$, что по корреляционному соотношению К.Аки соответствует землетрясению с Ms=7.8. Следует заметить, что для такого

землетрясения подвижка в очаге в 1 метр слишком мала, так что для достижения правдоподобного результата предполагается определенная модификация параметров.

Что касается узкой внутренней полосы, то согласно клавишной подели Лобковского здесь возможны очаги типа reverse dip-slip, для них предполагаемые значения параметров изменяются и $\delta \approx 110-120^{\circ}$ при $\lambda = 90^{\circ}$. Параметр W (вертикальную протяженность) при этом придется сократить до 40-50 км.

Проведенные консультации с камчатскими сейсмологами показали целесообразность рассмотрения базового набора очагов цунамигенных землетрясений, состоящего из трех групп – с магнитудами, соответственно, 7.8, 8.2, 9.4 (см. рис.)

1. Mw=9.2 L =430, W=150 D=x m=4e11 CGS						
 1A. dip 15 rake 90 depth 0-35 apprx interplate PA-OKh 1B. dip 10 rake 170 depth 20 apprx interplate PA-BE 						
2. Mw=8.4 L =215, W=75 D=x m=4c11 CGS						
2A dip 15 rake 90 depth 0-17 apprx or 17-35 interplate PA-OKh, element for Mw=9.2 2B dip +/-35 rake 90 center depth 20 apprx intraplate PA 2C dip 10 rake 170 depth 20 apprx interplate PA-BE						
3. Mw=7.8 L =108, W=38 D=x m=4c11 CGS						
3A dip 15 rake 90 depth 0-8, 9-17 17-26, 27-35 interplate PA-OKh, element for Mw=8.4 3B dip +/-35 rake 90 center depth 20 apprx intraplate PA 3C dip 10 rake 170 depth 20 apprx interplate PA-BE						
3D dip +/-35 rake 90 center depth 15 intraplate NA-BE, NA-OKh						
4. Mw=8.1 L =150, W=52 D=x m=4c11 CGS 4A dip +/-45 rake -90 center depth 15 apprx intraplate PA outer rise, tensional						
5. Variants of NA-[Okh,Bc] plate boundary						

Рисунок 6.

3. Концепция предлагаемого решения

Для решения поставленной задачи необходимо подобрать математическую модель и вычислительный алгоритм для получения точных результатов расчета распространения цунами. Для этого необходимо произвести серию расчетов на основе множества вариантов на реальной батиметрии и проанализировать полученные результаты. Также требуется разработать программное обеспечение для генерации начального возмущения свободной поверхности воды в открытом океане в районе землетрясения. Для правильного использования этого программного обеспечения нужно провести анализ истории землетрясений в заданном регионе и провести районирование океана на зоны потенциально опасных очагов землетрясений на основе этой истории и батиметрии региона. Полученные зоны будут использованы для проведения серийных расчетов с целью определения максимальных значений амплитуд волн приходящих на побережье. Для серийных расчетов необходимо определить привязку защищаемых пунктов к вычислительной сетке и, самое главное, разработать программное обеспечение для управления вычислительным модулем, модулем генерации начального возмущения и другими модулями.

Решение поставленной задачи включает в себя разработку стандартов взаимодействия между модулями системы, обмена информации между ними и структур хранения данных (результатов расчетов, параметров источников землетрясений, параметров расчета). Также немаловажно отметить, что система должна быть адаптирована к усвоению результатов вычислительного моделирования, эффективность которого в значительной степени определяется положенной в основу *математической моделью* и ее численной реализацией, а также выбранными для этого программными средствами.

Математические модели, на которых основана разрабатываемая система, представляются иерархией уравнений волновой гидродинамики с набором "физических", "географических" и "математических" параметров. К физико-географическим параметрам относятся начальные данные (форма начального возмущения свободной поверхности), форма границ (очертания берегов и сооружений) и граничные условия, батиметрия и возможный закон ее изменения (оползни, наносы, трещины, подвижки), рельеф суши, шероховатость, ветровое трение, коэффициенты турбулентного перемешивания и др. "Математические" параметры носят виртуальный характер и возникают в ходе построения математческих моделей и вычислительных алгоритмов.

4. Предлагаемое решение

Общая схема разрабатываемой системы изображена на рисунке 7:

Рисунок 7. Схема обмена данными между модулями системы.

Разрабатываемая система должна включать в себя следующие компоненты.

База данных элементарных моделей очагов.

Эта база данных предназначена для хранения данных об источниках землетрясений, полученных в результате районирования региона. Она также включает в себя данные о типах источников в рассматриваемом регионе.

Модуль генерации начального возмущения.

Этот модуль предназначен для формирования базы данных источников на основе расчета смещений поверхности океана, возникающих в результате подводных цунамигенных землетрясений.

В качестве модели очагов землетрясений принимается модель, созданная В.К.Гусяковым и в последствии развитая в работах М.Окады (Okada, 1985). Эта модель характеризуется параметрами:

- Длиной разрыва *L* (км)
- Шириной разрыва $W(\kappa M)$ •
- Глубиной верхнего края разрыва *d* (км)
- Азимутом простирания разрыва ТЕ (градусы) •
- Углом падения разрыва *DE* (градусы) •
- Направлением подвижки в плоскости разрыва *LA* (градусы) •
- Величиной подвижки D (м)

Разрабатываемая система предназначена для обеспечения вычислений начальных смещений океана по заданным параметрам, вводимых пользователем или заданных по умолчанию.

Исходя из анализа сейсмотектонической обстановки, в первой версии системы приняты (*по умолчанию*) следующие значения этих параметров:

• Значения параметров *L*, *W* и *D* выводятся из корреляционных соотношений с магнитудой землетрясения М:

Log L = 0.5 M - 1.9,

Log W = 0.5 M - 2.2,

Log D = 0.5 M - 3.2.

- Инструментально определенная глубина гипоцентра считается соответствующей середине разлома.
- Углы DE и LA считаются фиксированными и равными 45° и 90° (возможно, будут подкорректированы на этапе анализа), соответственно.
- Угол ТЕ принимается равным углу касательной к изобате батиметрии дна, проходящей через гипоцентр очага. Этот угол может быть подкорректирован пользователем непосредственно перед вычислением смещений свободной поверхности океана.

Результатом работы системы является поле смещений на сетке покрывающем участок сферы земного шара с 1-минутным шагом. Это поле смещений затем предоставляется системе верхнего уровня, осуществляющей расчет трансформации цунами.

База данных источников.

Эта база данных предназначена для хранения возмущений свободной поверхности воды, полученных на основе расчетов по модулю генерации начального возмущения данных из базы данных элементарных источников.

На данный момент система состоит из:

- Блока ввода и корректировки параметров очага
- Блока визуализации
- Блока расчета смещений (вычислительный блок)
- Блока интерполяции

Остановимся подробнее на двух последних блоках:

Оба блока реализованы в виде единой статической библиотеки, написанной на языке Fortrtan 90

1. Блок расчета смещений (вычислительный блок).

Этот блок реализуется расчет смещений свободной поверхности в декартовой системе координат на локальном участке региона в окрестности заданного эпицентра землетрясения. Блок основан на выше упомянутом алгоритме В.К.Гусякова. Входными данными вычислительного блока является ini-файл с параметрами:

DE - по умолчанию равен 45°,

LA - по умолчанию равен 90°,

TE,

М - магнитуда землетрясения,

FI - широта в градусах эпицентра землетрясения

PSI - долгота в градусах эпицентра землетрясения

На выходе блок дает массив смещений свободной поверхности океана на декартовой сетке с шагом, соразмерным эквиваленту одной минуты в километрах. Формат этого массива соответствует стандартному формату GRD-файла (формат DSAA).

2. Блок интерполяции.

Этот блок предназначен для интерполяции смещений, полученных с помощью вычислительного блока, на сетке в сферических координатах. В качестве входных данных используется сферические координаты эпицентра землетрясения, массив смещений, полученных вычислительным блоком и некоторые промежуточные параметры, характеризующие локальную окрестность эпицентра и вычислительную сетку в декартовых координатах.

Интерполяция выполняется следующим образом. Сначала сферические координаты минутной сетки в окрестности эпицентра пересчитываются в локальные декартовы координаты. Затем для каждой такой точки определяются 4 ближайшие точки вычислительной сетки, используемой в вычислительном модуле. И далее по формулам билинейной интерполяции определяются значения смещений в узлах минутной сетки в окрестности эпицентра. Вне окрестности эпицентра смещения полагаются равными нулю. Окрестность эпицентра определяется прямоугольником в локальных декартовых координатах (и, соответственно трапецией в сферических координатах) таким образом, чтобы абсолютные значения смещений на границах этого прямоугольника не превышали 5% от максимального абсолютного значения внутри окрестности.

На выходе блок интерполяции предоставляет массив смещений свободной поверхности на сферической сетке с минутным шагом во всем регионе.

15

База данных истории землетрясений.

Эта база данных включает в себя наиболее полную историю и информацию о происходивших землетрясениях в рассматриваемом регионе. Эта база данных используется при районировании региона, а также носит информационный характер для конечного пользователя.

Вычислительный модуль.

Этот модуль включает в себя вычислительный алгоритм распространения цунами. Этот алгоритм реализует разностный метод Мак-Кормака в рамках модели мелкой воды. Тип модели (линейная или нелинейная) будет определен позже на основе анализа предварительных расчетов. Ожидаемые высоты цунами от каждого элементарного очага вычисляются для набора точек, находящихся на достаточно глубокой воде, с тем, чтобы обеспечить применимость модели, затем полученные амплитуды пересчитываются на прибрежные точки с использованием широко известной формулы Грина.

Батиметрия.

Батиметрия поверхности дна является фиксированной для данной задачи и будет храниться в соответствующей базе данных и использоваться вычислительным модулем и модулем визуализации. Как уже было упомянуто выше, в качестве базовой используются численные значения глубин и высот, заданные на равномерной «одноминутной» сетке, покрывающей прямоугольный фрагмент от 153 до 173 градусов В.Д. и от 47 до 62 градусов С.Ш. В дальнейшем, при необходимости, в прибрежных районах может быть использована более детальная сетка, предоставленная Заказчикам. Такая сетка, в частности, может оказаться полезной при окончательном пересчете высот волн вблизи уреза по соответствующим значениям на 5-ти метровой (или близкой к ней) изобате. В качестве эмпирических соотношений для такого рода пересчета могут быть использованы формулы Грина, хорошо зарекомендовавшие себя в технологии ЯМА.

Модуль визуализации.

Этот модуль включает в себя средства и алгоритмы для графического представления батиметрии, результатов расчета, истории землетрясений, расположения источников.

Управляющий модуль.

Управляющий модуль полностью обеспечивает управление модулями, взаимодействие и обмен информации между ними, внесение и запрос информации из баз данных. Также управляющий модуль отслеживает нештатные ситуации, возникающие в процессе вычислений, и вносит (автоматически или через пользовательский интерфейс) необходимые изменения параметров вычислительного алгоритма. Этот модуль обеспечивает накопление результатов для последующей обработки и интерпретации, оперативно сообщает о важной оперативной информации, о динамике моделируемого явления или о ходе вычислений. Также он выполняет функции по обработке результатов моделирования, вычислению необходимых функционалов решения, обеспечивает качественную визуализацию.

База данных результатов расчетов.

Эта база данных предназначена для хранения результатов расчетов распространения цунами. Включает в себя процедуры получения максимальных значений высот волн в защищаемых пунктах. Предполагается, что эта база будет пополняться по мере выполнения серийных расчетов.

База данных защищаемых пунктов.

Эта база данных содержит координаты защищаемых пунктов и их соответствия расчетной сетке. Координаты определяются Заказчиком (см. таблицу 1). На рисунке 8 изображено распределение глубин в узлах сетки, наиболее близких к защищаемым пунктам. Следует заметить, что в качестве базовой принята изобата, проходящая по глубинам порядка 5 метров. Как показывает рисунок, в некоторых случаях ближайшими к защищаемым пунктам являются узлы сетки с большими глубинами. Отрицательная глубина (т.е. – «суша» встречается только в пункте «Петропавловский маяк»).

Пользовательский интерфейс системы.

Пользовательский интерфейс системы должен реализовывать следующие функции:

- Доступ к данным БД результатов расчетов.
- Доступ к данным БД элементарных моделей очагов (возможно, изменение этих данных).
- Доступ к данным БД истории землетрясений (только чтение).
- Доступ к данным БД защищаемых пунктов (только чтение).
- Обеспечение расчета источника (возможно, в том и композитного) в произвольной точке расчетной области, распространения цунами до береговой линии и получение максимальной высоты волн в любом из защищаемых пунктов.
- Визуализацию батиметрии, истории землетрясений, конечных результатов расчета и, возможно, некоторую визуализацию в процессе расчета.
- Организация серийных расчетов.
- Обеспечение (полуавтоматического) районирования региона.
- Пополнение баз данных.

Информационная система по источникам возникновения цунами TsunamiGIS®

Информационная система по источникам возникновения цунами является графической оболочкой над системой расчета первоначальных возмущений системой хранения и визуализации результатов проводимых расчетов. Общий вид интерфейса программы представлен на рисунке 9.

Рисунок 9. Общий вид интерфейса программы

Интерфейс реализован в среде Borland Delphi с использованием ряда библиотек визуализации картографической и трехмерной информации разработанных в ИВТ С РАН.

Функциональные возможности картографического интерфейса

Функциональные возможности картографического интерфейса предоставляют пользователю:

- Возможность использования в качестве исходных материалов карт в стандартных картографических форматах,
- Возможность отображения многослойной картографической подложки,
- Функции панорамирования, масштабирования изображения,
- Инструменты просмотра информации по источнику,
- Инструмент выбора источника и проведения расчета по внешней модели начального возмущения.

В основном экране интерфейса пользователю доступна карта исследуемого региона с нанесенной сеткой источников. Имеется возможность масштабирования карты, а также интерактивное получения координат курсора и значения глубины. Пользователь имеет возможность отключения или включения слоев карты по-своему усмотрению.

Инструмент Выбор позволяет выбрать источник и через сплывающее меню вызвать диалог просмотра базы данных сопряженных с данным источником расчетов.

Инструмент Источник позволяет выбрать источник для проведения расчетов. После выбора источника появляется диалоговое окно (рисунок 10) с доступной вкладкой для ввода параметров расчета.

ID источника		
Широта (Fi) Долгота (Psi) DX DY М (магнитуда)	N056'13'36.47'' (56.00000) E163'47'32.26'' (163.50000) 1.85 1.850 9.500	
DE (дельта) LA (Lyamda km) TE (град)	90.000 90.000 225.000	

Рисунок 10. Диалоговое окно выбора источника цунамигенного землетрясения

После ввода параметров источника нажатием кнопки Расчет производиться запуск внешней процедуры расчета матрицы начального возмущения.

После завершения расчета открывается вкладка результатов расчета. Результат представляется в виде 3х мерной поверхности (рисунок 11).

Рисунок 11. Вкладка результатов расчета

Имеется возможность масштабирования, поворота и перемещения графика в окне вывода.

Для корректировки расчета или проведения другого необходимо перейти на вкладку Параметры счета и введя новые значения параметров произвести новый расчет.

После выполнения расчета открывается доступ к функции сохранения результатов в базе данных (кнопка Сохранить в БД). Сохраненные результаты расчетов далее доступны через инструмент ВЫБОР интерфейса.

Программный интерфейс является масштабируемой системой с возможностью быстрой переадаптации на другой исследуемый регион.

5. Этапы разработки системы

Процесс разработки системы включает в себя этапы:

1) Постановка задачи.

Заказчиком и руководителем проекта выполняется постановка задачи.

2) Анализ требований.

Разработчиками проекта выполняется анализ и формирование требований к системе и согласование их с заказчиком.

3) Проектирование.

Включает в себя проектирование системы в целом, выбор технологий, определение порядка разработки блоков системы, начало проектирования пользовательского интерфейса.

4) Реализация.

Включает в себя последовательную реализацию блоков системы. Причем

реализация одного блока также может быть разбита на этапы, аналогичные процессу разработки системы.

5) Тестирование.

Проверка как созданных блоков, так и системы в целом.

Важно отметить, что процесс разработки является итерационным, на каждой итерации возможен возврат к любому этапу. Постановка задачи должна включать четкое описание характера решаемой задачи, определение степени детальности расчета, указание перечня требуемых функционалов, формы представления и объема результатов, в том числе и предназначенных для передачи в хранилища данных. Как правило, при этом требуется предварительное формирование набора защищаемых пунктов и объектов, географическая (картографическая) привязка соответствующих входных данных, составление цифровых карт (массивов), удовлетворяющих согласованным стандартам, и т.п.

Эти задачи должны решаться посредством выполнения некоторой технологической цепочки, на первом этапе которой выполняются пробные расчеты с использованием различных математических моделей различного уровня сложности (для выявления важности вкладов нелинейности, дисперсии, диссипации и т.п.). При этом рассматриваются разные варианты вычислительных алгоритмов (для достижения нужной точности) и апробируются доступные программные системы, так как особенности реализации алгоритмов порой оказывают серьезное влияние на характер результатов.

Только после сопоставления и тщательного анализа полученной информации, в том числе и с имеющимися натурными и историческими материалами, может быть выбрана модель (собственно уравнения, алгоритм и код), с помощью которой на последующихэтапах будут получены результаты, предназначенные для практического использования. Характер решаемой задачи определяется особенностями и размерами охватываемой акватории, определяющими пространственно-временные масштабы задачи.

Для численного моделирования поведения волны цунами у побережья применяются модели, требующие более детальную батиметрию, чем для расчетов распространения по глубокому океану, знание параметров шероховатости, а также повышение порядка гидродинамической аппроксимации из-за накопления эффектов дисперсии и нелинейности.

Таким образом, можно указать следующие характеристики задач, влияющие на выбор математических моделей:

1. Механизм генерации.

2. Местонахождение источника.

3. Сопутствующие явления.

Таблица 2.

4. Специфика акватории (пространственные масштабы, степень неоднородности дна, включение островных систем)

5. Этап развития явления (пространственно-временные масштабы, вхождение в прибрежную зону)

Для обеспечения необходимой точности расчетов каждому защищаемому пункту были сопоставлены по 4 соседа, непосредственно прилегающих к пункту «справа» и «слева» вдоль соответствующей изобаты. Распределение глубин в этих точках изображено на рисунке 12. Вместе с «защищаемыми» пунктами эти точки определяют совокупность позиций размещения расчетных мареографов в последующих серийных расчетах. Характеристики этих точек приведены в таблице 2.

	name	Phi-0	Psi-0	phi	psi	i	j	D-ij
1.	Okeanskij (o. Paramushir)	155.8	50.2	155.8357	50.22024	171	194	7.628
2.	Okeanskij (o. Paramushir)	155.8	50.2	155.8023	50.18687	169	192	7.134
3.	Okeanskij (o. Paramushir)	155.8	50.2	155.819	50.20356	170	193	9.606
4.	Okeanskij (o. Paramushir)	155.8	50.2	155.8524	50.22024	172	194	11.670
5.	Okeanskij (o. Paramushir)	155.8	50.2	155.8691	50.22024	173	194	13.859
6.	g. Severo-Kuril'sk	156.2	50.68	156.186	50.67075	192	221	5.449
7.	g. Severo-Kuril'sk	156.2	50.68	156.1693	50.67075	191	221	10.587
8.	g. Severo-Kuril'sk	156.2	50.68	156.1693	50.65406	191	220	14.586
9.	g. Severo-Kuril'sk	156.2	50.68	156.186	50.65406	192	220	15.044
10.	g. Severo-Kuril'sk	156.2	50.68	156.2027	50.65406	193	220	15.677
11.	Babushkino (o. Shumshu)	156.42	50.63	156.4195	50.63737	206	219	5.716
12.	Babushkino (o. Shumshu)	156.42	50.63	156.3862	50.62069	204	218	5.324
13.	Babushkino (o. Shumshu)	156.42	50.63	156.4028	50.62069	205	218	12.204
14.	Babushkino (o. Shumshu)	156.42	50.63	156.4362	50.65406	207	220	12.773
15.	Babushkino (o. Shumshu)	156.42	50.63	156.4529	50.67075	208	221	17.411
16.	GMS m. Lopatka	156.67	50.87	156.653	50.87097	220	233	5.439
17.	GMS m. Lopatka	156.67	50.87	156.653	50.90434	220	235	13.422
18.	GMS m. Lopatka	156.67	50.87	156.653	50.88765	220	234	6.306
19.	GMS m. Lopatka	156.67	50.87	156.6697	50.85428	221	232	11.481
20.	GMS m. Lopatka	156.67	50.87	156.6864	50.85428	222	232	15.188
21.	KNP m. Zheltyj	157.7	51.63	157.7039	51.53838	283	273	5.649
22.	KNP m. Zheltyj	157.7	51.63	157.6706	51.53838	281	273	2.998
23.	KNP m. Zheltyj	157.7	51.63	157.6872	51.53838	282	273	3.084
24.	KNP m. Zheltyj	157.7	51.63	157.7206	51.53838	284	273	8.142
25.	KNP m. Zheltyj	157.7	51.63	157.7373	51.53838	285	273	10.191
26.	GMS Vodopadnaja	158.07	51.83	158.0709	51.78865	305	288	16.855
27.	GMS Vodopadnaja	158.07	51.83	158.0375	51.77197	303	287	12.245
28.	GMS Vodopadnaja	158.07	51.83	158.0542	51.77197	304	287	19.262
29.	GMS Vodopadnaja	158.07	51.83	158.0876	51.77197	306	287	42.006
30.	GMS Vodopadnaja	158.07	51.83	158.1043	51.80534	307	289	15.189
31.	RSB buhta Hodutka	158.08	51.77	158.0709	51.78865	305	288	16.855
32.	RSB buhta Hodutka	158.08	51.77	158.0209	51.75528	302	286	9.693
33.	RSB buhta Hodutka	158.08	51.77	158.0209	51.77197	302	287	6.659
34.	RSB buhta Hodutka	158.08	51.77	158.0375	51.75528	303	286	17.058
35.	RSB buhta Hodutka	158.08	51.77	158.0709	51.77197	305	287	27.862
36.	RSB buhta Asacha	158.3	52.13	158.3211	52.12236	320	308	6.628
37.	RSB buhta Asacha	158.3	52.13	158.3378	52.08899	321	306	31.659
38.	RSB buhta Asacha	158.3	52.13	158.3211	52.10567	320	307	16.729
39.	RSB buhta Asacha	158.3	52.13	158.3378	52.12236	321	308	14.086
40.	RSB buhta Asacha	158.3	52.13	158.3545	52.12236	322	308	9.251
41.	RSB buhta Zhirovaja	158.43	52.6	158.4379	52.60623	327	337	13.122
42.	RSB buhta Zhirovaja	158.43	52.6	158.4879	52.57286	330	335	17.558
43.	RSB buhta Zhirovaja	158.43	52.6	158.4712	52.58954	329	336	19.041
44.	RSB buhta Zhirovaja	158.43	52.6	158.4712	52.60623	329	337	19.062
45.	RSB buhta Zhirovaja	158.43	52.6	158.4879	52.60623	330	337	18.097
46.	Buhta Russkaja (mys Vhodnoj)	158.5	52.43	158.5046	52.43938	331	327	16.174
47.	Buhta Russkaja (mys Vhodnoj)	158.5	52.43	158.5213	52.43938	332	327	18.684
48.	Buhta Russkaja (mys Vhodnoj)	158.5	52.43	158.5379	52.43938	333	327	24.253
49.	Buhta Russkaja (mys Vhodnoj)	158.5	52.43	158.5213	52.45606	332	328	18.176

50.	Buhta Russkaja (mys Vhodnoj)	158.5	52.43	158.5213	52.47275	332	329	12.767
51	RSB bubta Listvinichnaia (mys Povorotnyi)	158 57	52 33	158 5713	52 33027	335	321	12 495
57.	ROB bulta Listvinichnaja (mys Povorotnyj)	150.57	52.00	150.5713	52.00021	225	220	1 201
52.	RSB burita Listvinichnaja (mys Povorotnyj)	156.57	52.55	100.0713	52.52256	335	320	1.201
53.	RSB buhta Listvinichnaja (mys Povorotnyj)	158.57	52.33	158.5713	52.3059	335	319	14.301
54.	RSB buhta Listvinichnaja (mys Povorotnyj)	158.57	52.33	158.5546	52.33927	334	321	11.650
55.	RSB buhta Listvinichnaja (mys Povorotnyj)	158.57	52.33	158.5546	52.35595	334	322	7.083
56.	RSB buhta Bol'shaia Sarannaia(mvs Sarannvi)	158.57	52.77	158.5713	52.77308	335	347	3.519
57.	RSB buhta Bol'shaja Sarannaja(mys Sarannyi)	158.57	52.77	158 5379	52 7564	333	346	14,717
58	RSB bubta Bol'shaja Sarannaja(mys Sarannyi)	158 57	52.77	158 5546	52 7564	334	3/6	20.010
50.	RSB bulta Bol'shaja Sarannaja(mys Sarannyj)	150.57	52.77	150.0040	52.7504	226	240	20.010
59.	RSB bunta Boi snaja Sarannaja(mys Sarannyj)	158.57	52.77	158.588	52.78977	330	348	2.211
60.	RSB buhta Bol'shaja Sarannaja(mys Sarannyj)	158.57	52.77	158.588	52.80645	336	349	2.963
61.	g. Petropavlovsk-Kamchatskij	158.58	53.02	158.588	53.02336	336	362	3.975
62.	g. Petropavlovsk-Kamchatskij	158.58	53.02	158.5546	53.04004	334	363	4.369
63.	g. Petropavlovsk-Kamchatskij	158.58	53.02	158.5713	53.04004	335	363	2.555
64	g. Petropavlovsk-Kamchatskij	158.58	53.02	158 6047	53 02336	337	362	3.094
65	g. Petropavlovsk-Kamchatskij	158 58	53.02	158 6214	53,00667	338	361	3 650
66	yhod y Avechin Rubty (Mye meiochnyi)	150.50	52.02	150.0214	52 97210	242	252	4.024
00.	vilou v Avachini. Bulitu (iviys majachinyj)	150.7	52.9	100.7040	52.07319	343	303	4.924
67.	vnod v Avacnin. Buntu (iviys majacnnyj)	158.7	52.9	158.6714	52.88988	341	354	2.343
68.	vhod v Avachin. Buhtu (Mys majachnyj)	158.7	52.9	158.6881	52.87319	342	353	4.131
69.	vhod v Avachin. Buhtu (Mys majachnyj)	158.7	52.9	158.7214	52.87319	344	353	7.554
70.	vhod v Avachin. Buhtu (Mys majachnyj)	158.7	52.9	158.7381	52.87319	345	353	15.228
71.	Petropavlovskij majak	158.72	53.02	158.7048	53.02336	343	362	-78.577
72.	Petropavlovskij majak	158.72	53.02	158,7048	53.02336	343	362	-78.577
73	Petropavlovskij majak	158 72	53.02	158 7048	53 02336	343	362	-78 577
74	Petronavlovskij majak	158 72	53.02	158 7048	53 02336	3/13	362	-78 577
74.	Petropavlovskij majak	150.72	53.02	150.7040	53.02330	343	302	-70.577
75.	renopaviovskij majak	158.72	53.02	158.7048	53.02336	343	302	-/0.5//
76.	byvsnee selo Halaktyrka	158.87	53	158.8716	52.98999	353	360	5.974
77.	byvshee selo Halaktyrka	158.87	53	158.8382	52.9733	351	359	5.844
78.	byvshee selo Halaktyrka	158.87	53	158.8549	52.98999	352	360	3.603
79.	byvshee selo Halaktyrka	158.87	53	158.8882	53.00667	354	361	1.647
80	byvshee selo Halaktyrka	158 87	53	158 9049	53 02336	355	362	0.264
81	RSB ust'e r. Nalvobevo	150.07	53.02	150 2552	53 14016	376	360	6 252
01.	RSB uster: Nalychevo	159.25	53.02	159.2552	53.14010	370	260	0.232
02.	RSB uster. Nalychevo	159.25	53.02	159.2365	53.14010	3/5	309	3.943
83.	RSB ust'e r. Nalychevo	159.25	53.02	159.2219	53.14016	374	369	0.544
84.	RSB ust'e r. Nalychevo	159.25	53.02	159.2719	53.14016	377	369	8.081
85.	RSB ust'e r. Nalychevo	159.25	53.02	159.2886	53.15684	378	370	0.576
86.	RSB ust'e r. Ostrovnaja	159.55	53.25	159.5721	53.24027	395	375	0.659
87.	RSB ust'e r. Ostrovnaja	159.55	53.25	159 5555	53 22358	394	374	3.822
88	RSB ust'e r. Ostrovnaja	159 55	53.25	159 5388	53 22358	303	374	1 765
00.	RSB ust's r. Ostrovnaja	159.55	52.25	159.5500	52 24027	206	275	6 1 5 5
09.	RSB uster. Ostrovnaja	159.55	53.25	159.5000	53.24027	390	375	0.155
90.	RSB ust e r. Ostrovnaja	159.55	53.25	159.6055	53.24027	397	3/5	10.234
91.	RSB ust'e r. Berezovaja	159.85	53.83	159.8557	53.82425	412	410	2.033
92.	RSB ust'e r. Berezovaja	159.85	53.83	159.8557	53.79088	412	408	4.167
93.	RSB ust'e r. Berezovaja	159.85	53.83	159.8557	53.80756	412	409	3.331
94.	RSB ust'e r. Berezovaja	159.85	53.83	159.8724	53.84093	413	411	6.624
95.	RSB ust'e r. Berezovaja	159.85	53.83	159 8724	53 85762	413	412	4,982
96	RSB ust'e r. Zhunanovo	159.87	53.67	159 8724	53 67408	413	401	1 801
07	ROB usto r. Zhupanovo	150.07	52.67	150.0724	52 67409	415	401	5 202
97.		159.67	53.67	159.9056	53.67406	415	401	5.293
98.	RSB USTE F. Zhupanovo	159.87	53.67	159.8891	53.67408	414	401	3.841
99.	RSB ust e r. Zhupanovo	159.87	53.67	159.8557	53.67408	412	401	0.383
100.	RSB ust'e r. Zhupanovo	159.87	53.67	159.8557	53.69077	412	402	2.843
101.	RSB ust'e r. Karymskaja	159.88	53.97	159.9224	53.97442	416	419	3.626
102.	RSB ust'e r. Karymskaja	159.88	53.97	159.9058	53.94105	415	417	3.613
103	RSB ust'e r. Karvmskaia	159.88	53.97	159.9058	53.95773	415	418	1.136
104	RSB ust'e r. Karvmskaja	159.88	53 97	159 9391	53 0011	417	420	5 618
104.	RSB list's r. Karymekaia	150.00	53.07	150.0559	54 00770	<u>418</u>	421	2 026
100.	DCD usto I. Narylliskaja DCD hubto Dollohojo Moduozhlis	100.00	52.22	150.0550	52 24020	410	204	10 004
100.	ROD butta Dol snaja wedveznka	159.95	53.33	109.9008	53.34038	410	301	10.331
107.	KSB buhta Bol'shaja Medvezhka	159.95	53.33	159.9892	53.32369	420	380	12.089
108.	RSB buhta Bol'shaja Medvezhka	159.95	53.33	159.9725	53.34038	419	381	19.828
109.	RSB buhta Bol'shaja Medvezhka	159.95	53.33	159.9391	<u>53.34</u> 038	417	381	20.656
110.	RSB buhta Bol'shaja Medvezhka	159.95	53.33	159.9391	53.35706	417	382	15.849
111.	GMS Semjachik	159.98	54.1	160.0058	54.1079	421	427	4.345
112	GMS Semiachik	159.98	54.1	160 0058	54 09121	421	426	6.948
113	GMS Semiachik	159.98	54 1	159 9892	54 07453	420	425	5 182
11/	GMS Semiachik	150.00	5/ 1	160.0052	54 12/59	421	428	2 71/
114.	CMS Semiashik	159.90	54.1	160.0050	54.12400	421	420	2.7 14
115.		109.98	54.1	100.0058	54.14127	421	429	1.401
116.	Kordon Zhupanovo	159.98	54.12	160.0058	54.12458	421	428	2./14
117.	Kordon Zhupanovo	159.98	54.12	160.0058	54.09121	421	426	6.948
118.	Kordon Zhupanovo	159.98	54.12	160.0058	54.1079	421	427	4.345
119.	Kordon Zhupanovo	159.98	54.12	160.0058	54.14127	421	429	1.401
120	Kordon Zhupanovo	159.98	54.12	160.0225	54,14127	422	429	2.338
121	GMS Kronoki /bubta Ol'ga/	161.2	54.62	161 1735	54 57508	401	455	3 108
121.	CMS Kronoki /buhta Ol'ga/	161.2	54.02	161 1404	54 57500	490	100	10 422
122.	CMS Kronoki /bulta Olya/	161.2	54.02	161 1500	54.57500	409	400	0.400
123.		101.2	54.02	101.1000	04.57508	490	400	0.490
124.	GIVIS Kronoki /buhta Ul'ga/	161.2	54.62	101.1/35	54.5584	491	454	10.333

125.	GMS Kronoki /buhta Ol'ga/	161.2	54.62	161.1735	54.54171	491	453	13.657
126.	Mys Kozlova	161.7	54.5	161.7073	54.49166	523	450	24.693
127.	Mvs Kozlova	161.7	54.5	161.6739	54.49166	521	450	24.326
128.	Mys Kozlova	161.7	54.5	161.6906	54,49166	522	450	22.971
129.	Mvs Kozlova	161.7	54.5	161,7239	54,49166	524	450	35.981
130	Mys Kozlova	161.7	54.5	161 7406	54 50834	525	451	4.936
131	RSB ust'e r. Storozh	161 73	55.4	161 7239	55 39266	524	504	1 102
132	RSB ust'e r. Storozh	161.73	55 4	161 7573	55 35929	526	502	5 4 2 7
133	RSB ust'e r. Storozh	161.73	55 <i>4</i>	161 7406	55 37597	525	503	2 152
13/	RSB ust'e r. Storozh	161.73	55 /	161 7230	55 / 003/	524	505	1 /58
104.	RSB ust's r. Storozh	161.73	55.4	161 7406	55 42602	524	505	1.430
135.	NGB dstell. Stolozin	161.73	55.4	161 9741	55.42003	520	105	0.050
130.	Uster. Bolishaja Glazhina	101.07	55.07	101.0741	55.07504	535	405	0.950
137.	Uster. Bolshaja Chazhma	161.87	55.07	161.9074	55.07564	535	485	6.249
138.	Uster. Bolshaja Chazhma	161.87	55.07	161.8907	55.07564	534	485	3.469
139.	Ustre r. Bol'snaja Chazhma	161.87	55.07	161.8741	55.09232	533	486	5.951
140.	Ust'e r. Bol'shaja Chazhma	161.87	55.07	161.8/41	55.10901	533	487	10.319
141.	Selo Hajijulja	162	58.15	162.0075	58.14572	541	669	0.675
142.	Selo Hajljulja	162	58.15	162.0075	58.11235	541	667	2.406
143.	Selo Hajljulja	162	58.15	162.0075	58.12903	541	668	1.523
144.	Selo Hajljulja	162	58.15	162.0242	58.1624	542	670	0.894
145.	Selo Hajljulja	162	58.15	162.0409	58.17909	543	671	2.991
146.	Majak mys Kronockij	162.13	54.75	162.1576	54.75862	550	466	17.171
147.	Majak mys Kronockij	162.13	54.75	162.1243	54.72525	548	464	28.574
148.	Majak mys Kronockij	162.13	54.7 <mark>5</mark>	162.141	54.74194	549	465	12.517
149.	Majak mys Kronockij	162.13	54.75	162.1576	54.77531	550	467	15.602
150.	Majak mys Kronockij	162.13	54.75	162.141	54.79199	549	468	5.586
151.	Selo Uka	162.14	57.92	162.1243	57.89544	548	654	3.991
152.	Selo Uka	162.14	57.92	162.1243	57.86207	548	652	0.282
153.	Selo Uka	162.14	57.92	162.1243	57.87875	548	653	1.412
154	Selo Uka	162.14	57.92	162.1076	57.89544	547	654	2.854
155	Selo Lika	162.14	57.92	162,0909	57 89544	546	654	2 787
156	Mys Kamenistvi	162.14	54.83	162 1576	54 82536	550	470	6 4 4 1
150.	Mys Kamenistyj	162.15	54.83	162 1243	54 80868	548	469	3 756
158	Mys Kamenistyj	162.15	54.83	162.1240	54 82536	5/0	400	6 / 17
150.	Mys Kamenistyj	162.15	54.00	162.141	54.02005	551	470	12 095
109.	Mys Kamenistyj	102.15	54.05	102.1743	54.04203	551	471	12.900
160.	Mys Kamenistyj	162.15	54.83	102.1743	54.85873	551	472	16.602
161.		162.27	58.54	102.2911	58.54010	558	693	0.116
162.	Selo Ivaschka	162.27	58.54	162.2744	58.51279	557	691	2.854
163.	Selo Ivaschka	162.27	58.54	162.2911	58.52948	558	692	1.717
164.	Selo Ivaschka	162.27	58.54	162.3078	58.56285	559	694	0.894
165.	Selo Ivaschka	162.27	58.54	162.3244	58.57953	560	695	0.874
166.	Selo Pankara	162.34	58.6	162.3411	58.59622	561	696	1.036
167.	Selo Pankara	162.34	58.6	162.3078	58.56285	559	694	0.894
168.	Selo Pankara	162.34	58.6	162.3244	58.57953	560	695	0.874
169.	Selo Pankara	162.34	58.6	162.3578	58.59622	562	696	4.412
170.	Selo Pankara	162.34	58.6	162.3745	58.6129	563	697	2.350
171.	Ust'Kamchatsk	162.47	56.27	162.4746	56.21023	569	553	3.044
172.	Ust'Kamchatsk	162.47	56.27	162.4412	56.21023	567	553	0.309
173.	Ust'Kamchatsk	162.47	56.27	162.4579	56.21023	568	553	1.577
174.	Ust'Kamchatsk	162.47	56.27	162.4912	56.21023	570	553	5.962
175.	Ust'Kamchatsk	162.47	56.27	162.5079	56.22692	571	554	0.435
176.	Selo Dranka	162.58	58.76	162.608	58.76307	577	706	2.839
177	Selo Dranka	162.58	58.76	162.5746	58,74638	575	705	4,728
178	Selo Dranka	162.58	58.76	162.5913	58.74638	576	705	6.811
179	Selo Dranka	162.58	58 76	162 6247	58 76307	578	706	6.206
180	Selo Dranka	162.58	58.76	162 6414	58 76307	579	706	7.288
181	Selo Makar'evskoe	162 74	58 86	162 8249	58 86318	590	712	2.877
182	Selo Makar'evskoe	162 74	58.86	162 7015	58 82081	588	710	1 928
182	Selo Makarlavskoe	162.74	58.86	162 8082	58 8/65	580	711	1.020
100.	Salo Makar'ayekoo	162.74	58.00	162.0002	58 96210	503	710	1.077
104.	Solo Makarlavakaa	102.74	50.00	162.0415	50.00318	591	740	4.047
100.		102.74	57.00	102.0415	57 20454	591	113	1.040
100.	ROD UST e r. Ozernaja	102.78	51.31	102.8082	57.30151	589	622	3.342
187.	ROB USTE F. UZEľNAJA	162.78	57.37	162.//48	57.32814	587	620	1.809
188.	RSB uste r. Ozernaja	162.78	57.37	162./915	57.34483	588	621	3.562
189.	RSB ust e r. Ozernaja	162.78	57.37	162.8249	57.3782	590	623	1.187
190.	RSB ust'e r. Ozernaja	162.78	57.37	162.8415	57.3782	591	623	6.448
191.	Ossora	163.08	59.3	163.0917	59.24694	606	735	4.833
192.	Ossora	163.08	59.3	163.0751	59.21357	605	733	1.794
193.	Ossora	163.08	59.3	163.0751	59.23026	605	734	2.098
194.	Ossora	163.08	59.3	163.1084	59.26363	607	736	0.462
195.	Ossora	163.08	59.3	163.1251	59.26363	608	736	4.818
196.	Poselok Ossora	163.09	59.3	163.0917	59.24694	606	735	4.833
197.	Poselok Ossora	163.09	59.3	163.0751	59.21357	605	733	1.794
198.	Poselok Ossora	163.09	59.3	163.0751	59.23026	605	734	2.098
199.	Poselok Ossora	163.09	59.3	163.1084	59.26363	607	736	0.462

200.	Poselok Ossora	163.09	59.3	163.1251	59.26363	608	736	4.818
201	Selo Tymlat	163.2	59 48	163 2085	59 49722	613	750	0.515
201.	Solo Tymlat	162.2	50.40	163 2410	50 40722	615	750	2 166
202.		103.2	59.40	103.2419	59.49722	015	750	3.100
203.	Selo Tymlat	163.2	59.48	163.2252	59.49722	614	750	3.812
204.	Selo Tymlat	163.2	59.48	163.2085	59.5139	613	751	2.320
205.	Selo Tymlat	163.2	59.48	163.1918	59.5139	612	751	1.827
206.	Selo Kostroma	163.21	59.17	163.2085	59.16352	613	730	1.003
207	Selo Kostroma	163.21	59.17	163 2419	59 14683	615	729	0.605
207.	Colo Kostroma	100.21	50.17	100.2410	50.14000	010	720	0.000
206.	Selo Kostionia	103.21	59.17	103.2252	59.16352	014	730	2.955
209.	Selo Kostroma	163.21	59.17	163.1918	59.1802	612	731	4.191
210.	Selo Kostroma	163.21	59.17	163.1751	59.1802	611	731	4.593
211.	Selo Nagornvi	163.22	59.49	163.2252	59.49722	614	750	3.812
212	Selo Nagornyi	163 22	59 49	163 2585	59 48053	616	749	0 194
212.	Solo Nagornyi	162.22	50.40	163 2410	50 40722	615	750	2 166
213.		103.22	59.49	103.2419	59.49722	015	750	3.100
214.	Selo Nagornyj	163.22	59.49	163.2085	59.49722	613	750	0.515
215.	Selo Nagornyj	163.22	59.49	163.1918	59.5139	612	751	1.827
216.	GMS mys Ozernoj	163.23	57.6	163.2419	57.59511	615	636	22.814
217.	GMS mys Ozernoj	163.23	57.6	163.2085	57.56174	613	634	22.021
218	GMS mys Ozernoj	163.23	57.6	163 2252	57 57842	614	635	19 403
210.	CMC mys Ozemej	160.20	57.0	162.252	57.01042	616	607	25.007
219.	Givis mys Ozemoj	103.23	0.10	103.2303	57.01179	010	637	25.237
220.	GMS mys Ozernoj	163.23	57.6	163.2585	57.62848	616	638	18.457
221.	GMS m. Afrika	<u>163.3</u> 3	56.27	1 <u>63.3</u> 586	<u>56.27</u> 697	622	557	24.942
222.	GMS m. Afrika	163.33	56.27	163.342	56.2436	621	555	6.132
223	GMS m. Afrika	163.33	56.27	163.3586	56,26029	622	556	23.588
224	GMS m Afrika	163 33	56.27	163 3586	56 20366	622	558	8 898
224.		162.00	56.07	160.0000	56 24024	600	550	21 000
220.		103.33	50.27	103.3/53	50.31034	023	559	31.220
226.	Seio Krasnoe	163.45	59.85	163.4587	59.83092	628	110	8.246
227.	Selo Krasnoe	163.45	59.85	163.4254	59.81424	626	769	3.215
228.	Selo Krasnoe	163.45	59.85	163.442	59.83092	627	770	4.371
229	Selo Krasnoe	163 45	59.85	163 4754	59 83092	629	770	8,256
220	Selo Krasnoe	163.45	50.00	163 4754	50 84761	620	771	2 804
230.		103.45	59.65	103.47.54	59.64701	029	770	2.094
231.	Uste r. Kichiga	163.51	59.78	163.442	59.83092	627	770	4.371
232.	Ust'e r. Kichiga	163.51	59.78	163.4087	59.79755	625	768	2.449
233.	Ust'e r. Kichiga	163.51	59.78	163.4254	59.81424	626	769	3.215
234.	Ust'e r. Kichiga	163.51	59.78	163.4587	59.83092	628	770	8.246
235	Ust'er Kichiga	163 51	59.78	163 4754	59 84761	629	771	2 894
200.	Sala Jagadhaa	160.51	50.00	162.6756	59,7207	644	704	2.004
230.		103.55	00.00	103.0700	36.7297	041	704	7.810
237.	Selo Jagodnoe	163.55	58.86	163.6422	58.71301	639	703	7.526
238.	Selo Jagodnoe	163.55	58.86	163.6589	58.71301	640	703	4.193
239.	Selo Jagodnoe	163.55	58.86	163.6922	58.74638	642	705	7.771
240.	Selo Jagodnoe	163.55	58.86	163,7089	58,76307	643	706	8.697
241	Selo Ananka	163 75	59.94	163 7756	50 04772	647	777	2 753
241.	Solo Anapka	160.75	50.04	162 7400	50.04772	645	775	2.700
242.	Selo Anapka	163.75	59.94	103.7423	59.91435	040	115	2.167
243.	Selo Anapka	163.75	59.94	163.759	59.93103	646	776	2.009
244.	Selo Anapka	163.75	59.94	163.7923	59.9644	648	778	0.730
245.	Selo Anapka	163.75	59.94	163.809	59.98109	649	779	0.859
246	Karaginskii ostr. rybozavod	163.87	58 97	163 859	58 97998	652	719	2 528
247	Karaginskij ostr. nybozavod	162.97	59.07	163 8257	58 04661	650	717	2.020
247.		100.07	50.31	100.0207	50.00000	654	740	0.301
248.		103.87	58.97	103.8424	58.96329	100	/18	3.450
249.	Karaginskij ostr. rybozavod	163.87	58.97	163.8757	58.99666	653	/20	2.906
250.	Karaginskij ostr. rybozavod	163.87	58.97	163.8924	58.99666	654	720	1.094
251.	Poselok II'pyrskij	164.28	59.97	164.2761	59.9644	677	778	3.055
252	Poselok II'pyrskii	164 28	59 97	164 2427	59 9644	675	778	3.101
252	Poselok Il'ovrskij	164.29	50.07	164 2504	50 0644	676	779	3 100
200.		104.20	53.31	104.2094	59.9044	670	770	3.100
254.		164.28	59.97	104.2927	59.9644	0/8	118	3.049
255.	Poselok Iľpyrskij	164.28	59.97	164.2927	59.98109	678	779	0.718
256.	Selo Ol'hovaja	164.45	60.07	164.4429	60.09789	687	786	3.259
257.	Selo Ol'hovaja	164.45	60.07	164.4095	60.09789	685	786	1.354
258	Selo Ol'hovaia	164 45	60.07	164 4262	60 09780	686	786	2 543
250	Selo Ol'hovaja	164 /5	60.07	164 4505	60.00700	699	796	0.850
209.		104.45	00.07	104.4393	00.09769	000	700	0.009
260.	Selo Urnovaja	164.45	60.07	164.4/62	60.0812	689	785	5./3/
261.	Selo Peschanoe	164.66	59.9	164.6597	59.99778	700	780	5.106
262.	Selo Peschanoe	164.66	59.9	164.6264	59.99778	698	780	4.525
263	Selo Peschanoe	164.66	59.9	164,643	59,99778	699	780	4.919
264	Selo Peschanoe	164 66	59.9	164 6764	59 99778	701	780	4 4 2 7
265	Selo Peschanoe	164 66	50.0	164 6024	50 00770	702	790	1 1 1 2
200.		104.00	53.3	104.0931	59.99110	740	700	1.113
266.		164.88	59.73	164.8/66	59.78087	/13	/6/	8.054
267.	Mys II'pinskij	164.88	59.73	164.8432	<u>59.78087</u>	711	767	3.735
268.	Mys II'pinskij	164.88	59.73	164.8599	59.78087	712	767	6.109
269.	Mys II'pinskij	164.88	59.73	164.8932	59.79755	714	768	1.643
270	Mys II'pinskii	164.88	59 73	164 9099	59 79755	715	768	5 1 3 9
270.	Solo Coko	165.05	60.00	165 0405	60.0010	725	705	1 206
2/1.		100.20	00.00	105.2435	00.0012	700	700	1.390
272.		105.25	80.00	105.2102	00.06452	/33	/84	2.498
273.	Selo Geka	165.25	60.08	165.2269	60.06452	734	784	3.755
274.	Selo Geka	165.25	60.08	165.2602	60.0812	736	785	4.093

275.	Selo Geka	165.25	60.08	165.2769	60.0812	737	785	5.736
276.	Selo Vyvenka	165.51	60.13	165.5104	60.18131	751	791	2.675
277.	Selo Vyvenka	165.51	60.13	165.4771	60.18131	749	791	2.513
278.	Selo Vyvenka	165.51	60.13	165.4937	60.18131	750	791	1.559
279.	Selo Vyvenka	165.51	60.13	165.5271	60,18131	752	791	5.892
280.	Selo Vyvenka	165.51	60.13	165 5438	60 18131	753	791	7.458
281	Selo Medvezhka	165.75	60.28	165 744	60 24805	765	795	3 908
201.	Selo Medvezhka	165.75	60.20	165 7106	60 23137	763	795	5.300
202.	Selo Medvezhka	105.75	00.20	105.7100	00.23137	703	794	3.400
283.	Selo Medvezhka	165.75	60.28	105.7273	60.24805	764	795	1.037
284.	Selo Medvezhka	165.75	60.28	165.7606	60.24805	766	795	5.355
285.	Selo Medvezhka	165.75	60.28	165.7773	60.24805	767	795	7.370
286.	Nikol'skoe	165.98	55.2	165.9775	55.17575	779	491	5.327
287.	Nikol'skoe	165.98	55.2	165.9441	55.20912	777	493	0.050
288.	Nikol'skoe	165.98	55.2	165.9608	55.19244	778	492	1.333
289.	Nikol'skoe	165.98	55.2	165.9942	55.15907	780	490	11.804
290.	Nikol'skoe	165.98	55.2	166.0108	55.15907	781	490	8.920
291.	Korf	166	60.37	166.0108	60.36485	781	802	1.187
292	Korf	166	60.37	165 9775	60 34816	779	801	2,282
293	Korf	166	60.37	165 9942	60 34816	780	801	2 857
200.	Korf	166	60.37	166 0275	60 38154	782	803	1 204
204.	Korf	166	60.37	166.0442	60 20922	702	003	1.204
295.	Rola Oliutorka	100	60.37	100.0442	60.39022	703	004	1.049
296.	Selo Oljutorka	166.1	60.31	100.0108	60.36485	781	802	1.187
297.	Selo Oljutorka	166.1	60.31	165.9775	60.34816	779	801	2.282
298.	Selo Oljutorka	166.1	60.31	165.9942	60.34816	780	801	2.857
299.	Selo Oljutorka	166.1	60.31	166.0275	60.38154	782	803	1.204
300.	Selo Oljutorka	166.1	60.31	166.0442	60.39822	783	804	1.849
301.	Selo Telichiki	166.11	60.44	166.1109	60.41491	787	805	3.508
302.	Selo Telichiki	166.11	60.44	166.0776	60.41491	785	805	1.722
303.	Selo Telichiki	166.11	60.44	166.0942	60.41491	786	805	2.885
304.	Selo Telichiki	166.11	60.44	166.1276	60.41491	788	805	3.789
305.	Selo Telichiki	166.11	60.44	166.1443	60.41491	789	805	3.750
306.	Selo Kultushino	166.26	60.47	166.2611	60,44828	796	807	5.365
307	Selo Kultushino	166.26	60.47	166 2277	60 44828	794	807	1 961
308	Selo Kultushino	166.26	60.47	166 2444	60 44828	795	807	3 859
300.	Solo Kultushino	166.26	60.47	166 2777	60.46406	707	909	0.036
210	Selo Kultushino	166.26	60.47	166 2044	60.46406	700	000	0.330
310.		100.20	00.47	100.2944	00.40490	790	700	2.109
311.	GIVIS bunta Lavrova	167.09	60.33	167.0951	60.29811	846	798	6.197
312.	GIVIS bunta Lavrova	167.09	60.33	167.0617	60.28142	844	797	7.365
313.	GMS buhta Lavrova	167.09	60.33	167.0784	60.29811	845	798	2.689
314.	GMS buhta Lavrova	167.09	60.33	167.1118	60.31479	847	799	5.867
315.	GMS buhta Lavrova	167.09	60.33	167.1118	60.33148	847	800	6.364
316.	Selo Preobrazhenskoe	167.58	54.78	167.5788	54.79199	875	468	10.194
317.	Selo Preobrazhenskoe	167.58	54.78	167.5455	54.82536	873	470	7.834
318.	Selo Preobrazhenskoe	167.58	54.78	167.5621	54.80868	874	469	17.337
319.	Selo Preobrazhenskoe	167.58	54.78	167.5955	54.79199	876	468	15.993
320.	Selo Preobrazhenskoe	167.58	54.78	167.6122	54.79199	877	468	23.371
321.	Poselok Pahacha	169.22	60.54	169.2135	60,54839	973	813	1.511
322	Poselok Pahacha	169.22	60.54	169,1802	60,54839	971	813	2,426
323	Poselok Pahacha	169.22	60.54	169 1968	60 54839	972	813	2 332
324	Poselok Pahacha	169.22	60.54	169 2302	60 54830	974	813	1 248
325	Poselok Pahacha	160.22	60.54	160.2302	60 54930	075	812	1 152
320.		109.22	60.04	160 6420	60 42450	910	013	2.572
320.	Apuka	109.02	00.39	109.0138	00.43159	997	000	3.372
321.	Арика	109.62	60.39	109.5805	00.43159	995	806	4.857
328.	Арика	169.62	60.39	169.5972	60.43159	996	806	3.952
329.	Apuka	169.62	60.39	169.6305	60.41491	998	805	5.647
330.	Apuka	169.62	60.39	169.6472	60.41491	999	805	5.358
331.	GMS Krasnaja	172.76	61.24	172.7665	61.2158	1186	853	8.688
332.	GMS Krasnaja	172.76	61.24	172.7331	61.2158	1184	853	5.933
333.	GMS Krasnaja	172.76	61.24	172.7498	61.2158	1185	853	7.789
334.	GMS Krasnaja	172.76	61.24	172.7832	61.23248	1187	854	7.160
335.	GMS Krasnaja	172.76	61.24	172.7998	61.24917	1188	855	4.783

Следующая серия рисунков 13-21 представляет контуры береговой линии исследуемой области (тонкая черная линия), прилегающую 5-ти метровую изобату (тонкая синяя линия), 55 сеточную аппроксимацию (маленькие красные крестики), защищаемые пункты в «исходных» координатах (лиловые кружки с большими синими цифрами внутри), их сеточные аппрокисмации (зеленые треугольники с маленькими оранжевыми цифрами внутри), их соседи (маленькие коричневые кружочки), а также «спорные» узлы, требующие уточнения (большие красные окружности). Точки на рисунках пронумерованы в соответствии с таблицей 1.

Рисунок 13.

На рисунке 22 изображены (крупные бежевые кружки) точки, в которых размещались расчетные мареографы для первых тестовых вычислительных экспериментов.

6. О выборе математических моделей.

Как уже было отмечено, выбор адекватной математической модели зависит от специфики решаемой задачи, специфики акватории, в которой решается задача и, что не менее важно, этапа развития явления в рамках одной задачи и одной акватории.

Использование наиболее полных моделей не всегда целесообразно не только в силу серьезного роста требуемых вычислительных ресурсов и усложнения необходимых алгоритмов, но и в силу невозможности адекватного определения всех входных параметров таких моделей.

К настоящему времени накоплен опыт, показывающий, что распространение волн цунами сейсмического происхождения можно с достаточной точностью рассчитывать в рамках уравнений мелкой воды первого и второго приближений.

Рисунок 15.

Рисунок 21

При этом замечено, что на разных пространственно-временных масштабах целесообразно использовать модели различного порядка гидродинамической аппроксимации. Так, распространение цунами по глубокому океану допустимо рассчитывать в рамках линейных уравнений первого и второго порядков. Однако в этих уравнениях необходимо учитывать сферичность земли и влияние сил Кориолиса.

Учет дисперсии необходим при распространении волн на значительные расстояния.

Трансформацию волны вблизи берега, а также взаимодействие с прибрежными конструкциями следует моделировать в рамках нелинейно-дисперсионных моделей с привлечением трехмерных моделей для уточнения вертикальной структуры потока.

Определение зоны затопления сухого берега, а также вычисление максимальных высот волн традиционно проводится в рамках нелинейных уравнений мелкой воды.

Опыт авторов настоящего отчета, основанный на решении как исследовательских, так и прикладных задач цунами, позволяет утверждать, что даже самые простые математические модели позволяют вполне адекватно оценить начальный этап развития цунами, в то время как последующие эффекты требуют тщательной работы для своего адекватного воспроизведения.

Правильный выбор модели для конкретной задачи может быть сделан только в результате предварительных множественных расчетов задач, близких по содержанию к

прикладным, с использованием различных моделей, различных алгоритмов на различных сетках.

В итоге может быть выполнено районирование защищаемых акваторий и побережья по математическим моделям, способным обеспечить адекватность результатов для каждого из типов производственных задач. Одновременно должно выполняться районирование по допустимым типам входных данных – определение детальности сетки для обеспечения нужной точности и степени допустимой модификации границ. А также районирование по другим «гидродинамическим» параметрам – шероховатости, характерном ветровом трении и т.п.

Таким образом, на первом этапе выполнения работ, разработан ряд основополагающих требований к математическим моделям, описывающим распространение волн цунами, и, предполагаемым к использованию в составе алгоритмического обеспечении процедур оценки характеристик цунами при принятии решений об угрозе цунами и отмене состояния угрозы цунами. В соответствии с Техническим заданием на первом этапе проекта выполнялись также работы по разработке структуры системы и ее программного наполнения для решения предусмотренных Контрактом задач численного моделирования критических характеристик волн цунами.

7. О результатах предварительных вычислительных экспериментов.

Рисунок 23. Начальное возвышение свободной поверхности, порожденное сейсмическим источником с гипоцентром в точке с координатами (55°С.Ш., 166°В.Д.)

Первые вычислительные эксперименты выполнялись с целью оценки особенностей области моделирования, выбора оптимальных расчетных параметров, определения математической модели или совокупности математических моделей, способных обеспечить необходимую точность результатов на заданной батиметрии и с помощью имеющихся вычислительных устройств (мощный 4-х ядерный вычислительный сервер, созданный в рамках государственного контракта 18н-06).

В качестве источников начальных возмущений (рисунки 23, 24) использовались поля, рассчитанные для модельных цунамигенных землетрясений, гипоцентра которых были расположены в точках (55°С.Ш., 166°В.Д.) и (55.7° С.Ш., 159.5° В.Д.). Первая группа расчетов проводилась для источника с W = 100 км., а вторая с увеличенным в два раза этим параметром W = 200 км.

Рисунок 24. Начальное возвышение свободной поверхности, порожденное сейсмическим источником с гипоцентром в точке с координатами (55.7° С.Ш., 159.5° В.Д.)

Расчеты проводились с помощью вычислительной системы «НЕРЕУС», реализующей – модель теории мелкой воды в нелинейном и линейном приближениях в сферической системе координат. Вычислительные алгоритмы, как и было отмечено выше базируются на классическом алгоритме схемы МакКормака, модифицированной с целью обеспечения

возможности управления процедурами фильтрации высокочастотных осцилляций, порождаемых спецификой компьютерных вычислений.

С целью определения особенностей аппроксимации нелинейных конвективных членов и влияния этих особенностей на точность расчета высот волн цунами в приграничных точках были рассмотрены два варианта такой аппроксимации – в дивергентной и в НЕдивергентной формах. Достоинства дивергентных схем, обеспечивающих автоматическое сохранение соответствующих законов сохранения приводит, к сожалению, к серьезным трудностям, связанным с делением на малые величины при определении скоростей течения по вычисленным значением потоков. В этом случае в прибрежных зонах приходится делить поток на малые значения полной глубины. Этих неприятностей лишены недивергентные схемы, требующие для выполнения основных балансных соотношений достаточно детельной сетки (с малым пространственным шагом). На рисунках 25 – 28 изображены результаты расчетов, где Здесь черная линия соответствует *линейной* модели, синяя – *нелинейной* модели с *дивергентной* аппроксимацией нелинейных членов, красная – *нелинейной* модели с *дивергентной* аппроксимацией.

Рисунок 25. Распределение «высот волн» в расчетных мареографах для источника с гипоцентром в точке (55°С.Ш., 166°В.Д.), W = 100 км.

36

Рисунок 27. Распределение «высот волн» в расчетных мареографах для источника с гипоцентром в точке (55.7° С.Ш., 159.5° В.Д.), W = 100 км.

Рисунок 28. Распределение «высот волн» в расчетных мареографах для источника с гипоцентром в точке (55.7° С.Ш., 159.5° В.Д.), W = 200 км.

По горизонтальной оси отложены номера мареографов с юга на север, а по вертикальной – «высота волны» в терминологии, введенной ЯМА – полусумма абсолютных значений максимальных и минимальных значений уровня свободной поверхности. Ссылаясь на опыт системы ЯМА, можно утверждать, что именно такие величины воспринимаются в качестве высоты волны на побережье.

Приведенные результаты показывают, что, скорее всего, расчеты будут проводиться по линейной модели, которая в тестовых расчетов практически не отличается от нелинейной модели. Эти различия, оставаясь пренебрежимо малыми, несколько возрастают при увеличении размеров очага. Отклонения, отмечаемые в нелинейной модели при дивергентной аппроксимации, проявляются в отдельных точках, достаточно локализованы и, скорее всего, объясняются упомянутыми выше обстоятельствами.