Российская академия наук Сибирское отделение Институт вычислительных технологий

> "УТВЕРЖДАЮ" Директор ИВТ СО РАН

академик _____ Ю. И. Шокин

30 сентября 2008 года

«Расчет высот волн цунами для защищаемых пунктов Сахалинской области и Приморского края»

ВТОРОЙ ПРОМЕЖУТОЧНЫЙ ИНФОРМАЦИОННЫЙ ОТЧЕТ

на выполнение НИОКР для государственных нужд по

Федеральной целевой программе

"Снижение рисков и смягчение последствий чрезвычайных ситуаций природного и техногенного характера

в Российской Федерации до 2010 года "

(контракт № 2н-08 от 21 мая 2008 г.)

Руководитель работ г.н.с., д.ф.-м.н., профессор

_____ Л. Б. Чубаров

Новосибирск, 2008 г

Исполнители:

д.ф.-м.н. с.н.с., к.ф.-м.н. инженер-исследователь инженер-исследователь инженер-исследователь В.К.Гусяков 3.И.Федотова В.В.Бабайлов С.А.Бейзель С.В.Елецкий

1. Введение	
2. Результаты расчетов	
Приложение 1	
Приложение 2	
Приложение 3	
Приложение 4	
Приложение 5	
Приложение 6	
Приложение 7	
Γ	

1. Введение

Работа на втором этапе, согласно календарному плану, посвящена разработке баз данных, включающих для каждого защищаемого пункта побережья Сахалинской области и Приморского края результаты расчета максимальных высот волн на изобатах 5 метров для модельных очагов цунамигенных землетрясений, а также базы данных, включающей для согласованных с Заказчиком защищаемых пунктов побережья Камчатского края результаты расчета максимальных высот волн на изобатах 10 метров для модельных очагов цунамигенных землетрясений дальней зоны.

Предварительные расчеты показали, что в непосредственной окрестности защищаемых пунктов абсолютные величины амплитуд волн цунами могут быть больше 5 метров и, поэтому было принято решение проводить дальнейшие производственные расчеты с параметром минимального заглубления 10 метров. Это означает, что в ходе предварительной обработки цифрового рельефа дна в расчетных областях, глубины, меньшие 10 метров, принимали значение 10 метров.

Таким образом, содержание настоящего отчета составляют результаты расчетов максимальных высот волн на изобатах 10 метров для каждого защищаемого пункта побережья Сахалинской области и Приморского края от модельных очагов цунамигенных землетрясений.

Предварительные расчеты выполнялись в глобальной расчетной области (Рис. 1), простирающейся от 128 до 170 градусов Восточной долготы и от 32 до 61 градуса Северной широты, рельеф которой был оцифрован с шагом 1 минута.

Рис. 1. Рельеф дна глобальной расчетной области. Указаны точки привязки защищаемых пунктов.

Анализ результатов (**Приложение 1**) позволил определить общий характер проявлений очагов цунамигенных землетрясений в каждом из защищаемых пунктов, согласно которому были определены расчетные подобласти, которые, с одной стороны, обеспечили приемлемую точность определения экстремальных волновых характеристик, а с другой, позволили провести все запланированные расчеты в заданный срок. Решение о проведении расчетов в подобластях было предопределено необходимостью перехода от минутной расчетной сетки к более детальной – 15-секундной. Как показали многочисленные методические расчеты, выполненные исполнителями для представительного набора модельных акваторий в 2007 – 2008 гг., такой переход позволяет получать результаты с точностью, достаточной для решения поставленных задач.

Таким образом, для совокупности модельных землетрясений (Рис. 2) с магнитудой 7.8 (их подробное описание приведено в предыдущем промежуточном отчете) были выделены **шесть** расчетных подобластей. Параметры соответствующих источников в принятой модели механизма цунамигенного землетрясения приведены в таблице (**Таблица 1**). Собственно математическая модель, использованная для расчета начальных смещений поверхности океана, порождаемых модельными цунамигенными землетрясениями, изложена в отчете исполнителей по контракту № 1н-07 от 22 марта 2007.

Рис. 2. Схема глобальной расчетной области. Указаны точки привязки очагов цунамигенных землетрясений с магнитудой 7.8 и защищаемых пунктов.

Схематическое расположение этих подобластей (Рис. 3), рельеф дна которых был оцифрован с шагом 15 секунд, показывает, что они частично пересекаясь, включают все защищаемые пункты и все модельные землетрясения. Географические координаты подобластей таковы:

Географические координаты расчетных подобластей для цунамигенных землетрясений с магнитудой 7.8										
ID	Минимальная Восточная дол- гота	Максимальная Восточная долгота	Минимальная Северная широта	Максимальная Северная широта	дна					
78-1a	155.1	167	49.9	58	Рис. 4					
78-1b	151	161	46	53	Рис. 5					
78-2	139.6	155.5	39.5	48.5	Рис. 6					
78-3	135	149.5	41	51.5	Рис. 7					
78-4	127	142	32	47	Рис. 8					
78-5	160	170	53	61	Рис. 9					

5

Таблица 1. Параметры очагов цунамигенных землетрясений с магнитудой 7.8.										
ID	У	x	L	W	DE	LA	ΤЕ	D0	H_top	
1_1a	55.83	164.00	108	38	15	90	33	3.42	5	
1_1b	56.08	163.63	108	38	15	90	33	2.74	15	
1_1c	56.25	163.13	108	38	15	90	33	2.74	25	
1_1d	56.38	162.63	108	38	15	90	33	2.74	35	
1_2a	55.00	163.19	108	38	15	90	33	3.42	5	
1_2b	55.17	162.69	108	38	15	90	33	2.74	15	
1_2c	55.33	162.25	108	38	15	90	33	2.74	25	
1_2d	55.54	161.88	108	38	15	90	33	2.74	35	
1a	54.17	162.38	108	38	15	90	33	3.42	5	
1b	54.33	161.94	108	38	15	90	33	2.74	15	
1c	54.50	161.50	108	38	15	90	33	2.74	25	
1d	54.67	161.00	108	38	15	90	33	2.74	35	
2a	53.25	161.50	108	38	15	90	30	3.42	5	
2b	53.50	161.00	108	38	15	90	30	2.74	15	
2c	53.67	160.56	108	38	15	90	30	2.74	25	
2d	53.83	160.13	108	38	15	90	30	2.74	35	
3a	52.42	160.56	108	38	15	90	33	3.42	5	
3b	52.58	160.13	108	38	15	90	33	2.74	15	
3c	52.83	159.63	108	38	15	90	33	2.74	25	
3d	53.00	159.19	108	38	15	90	33	2.74	35	
4a	51.54	159.63	108	38	15	90	35	3.42	5	
4b	51.75	159.19	108	38	15	90	35	2.74	15	
4C	51.96	158.75	108	38	15	90	35	2.74	25	
4d	52.17	158.25	108	38	15	90	35	2.74	35	
5a	50.67	158.56	108	38	15	90	37	3.42	5	
5b	50.92	158.13	108	38	15	90	37	2.74	15	
5C 5-1	51.17	157.75	108	38	15	90	37	2.74	25	
50 Co	51.38	157.31	108	38	15	90	37	2.74	35	
0a 6h	49.83	157.50	108	38	15	90	37	3.42	5 15	
60	50.06	157.13	100	აი აი	15	90	31 27	2.74	15	
64	50.29	150.09	100	20	15	90	27	2.74	25	
0u 7a	10.00	156.50	100	38	15	90	35	2.14	55	
7a 7b	49.00	156 13	108	38	15	90 90	35	2.42 2.74	15	
7c	49.20	155.69	108	38	15	90	35	2.74	25	
7d	49.42	155.00	108	38	15	90	35	2.74	20 35	
8a	48 25	155.63	108	38	15	90	35	3.42	5	
8b	48.42	155.13	108	38	15	90	35	2.74	15	
8c	48.58	154.75	108	38	15	90	35	2.74	25	
8d	48.83	154.25	108	38	15	90	35	2.74	35	
9a	47.33	154.63	108	38	15	90	41	3.42	5	
9b	47.54	154.13	108	38	15	90	41	2.74	15	
9c	47.75	153.63	108	38	15	90	41	2.74	25	
9d	48.00	153.25	108	38	15	90	41	2.74	35	
10a	46.46	153.38	108	38	15	90	42	3.42	5	
10b	46.71	153.00	108	38	15	90	42	2.74	15	
10c	46.96	152.63	108	38	15	90	42	2.74	25	
10d	47.17	152.19	108	38	15	90	42	2.74	35	
11a	45.67	152.25	108	38	15	90	46	3.42	5	
11b	45.92	151.88	108	38	15	90	46	2.74	15	
11c	46.17	151.50	108	38	15	90	46	2.74	25	
11d	46.42	151.13	108	38	15	90	46	2.74	35	
12a	44.92	151.00	108	38	15	90	48	3.42	5	
12b	45.17	150.63	108	38	15	90	48	2.74	15	
12c	45.46	150.25	108	38	15	90	48	2.74	25	

12d	45.75	149.88	108	38	15	90	48 2.74	35
13a	44.25	149.67	108	38	15	90	52 3.42	5
13b	44.50	149.27	108	38	15	90	52 2.74	15
13c	44.83	149.00	108	38	15	90	52 2.74	25
13d	45.08	148.67	108	38	15	90	52 2.74	35
14a	43.58	148.27	108	38	15	90	56 3.42	5
14b	43.83	148.00	108	38	15	90	56 2.74	15
14c	44.17	147.67	108	38	15	90	56 2.74	25
14d	44.42	147.27	108	38	15	90	56 2.74	35
15a	42.83	147.00	108	38	15	90	56 3.42	5
15b	43.17	146.60	108	38	15	90	56 2.74	15
15c	43.42	146.27	108	38	15	90	56 2.74	25
15d	43.67	145.87	108	38	15	90	56 2.74	35
16a	42.25	145.67	108	38	15	90	58 3.42	5
160	42.50	145.27	108	38	15	90	58 2.74	15
100	42.75	145.00	108	38	15	90	58 2.74	25
160	43.04	144.60	108	38	15	90	58 2.74	35
17d 17b	41.04	144.27	100	30 20	15	90	50 3.42	С 15
170	41.03	144.00	100	30	15	90	58 2 74	25
17C	42.00	143.07	100	30	15	90	58 2 74	25
18a	42.42	143.27	108	38	15	90 90	58 3 42	5
18b	40.52	142.00	108	38	15	90	58 2 74	15
18c	41.50	142.07	108	38	15	90	58 2 74	25
18d	41.75	142.00	108	38	15	90	58 2.74	35
19a	33.83	130.20	108	38	70	90	44 2.74	5
19b	34.04	129.80	108	38	90	90	44 2.74	5
19c	34.33	129.40	108	38	110	90	44 2.74	5
20a	34.58	131.40	108	38	70	90	52 2.74	5
20b	34.83	131.00	108	38	90	90	52 2.74	5
20c	35.08	130.67	108	38	110	90	52 2.74	5
21a	35.25	132.67	108	38	70	90	59 2.74	5
21b	35.50	132.27	108	38	90	90	59 2.74	5
21c	35.83	132.00	108	38	110	90	59 2.74	5
22a	35.92	134.00	108	38	70	90	61 2.74	5
22b	36.25	133.67	108	38	90	90	61 2.74	5
22c	36.50	133.40	108	38	110	90	61 2.74	5
23a	36.58	135.40	108	38	70	90	61 2.74	5
23b	36.83	135.13	108	38	90	90	61 2.74	5
23c	37.17	134.80	108	38	110	90	61 2.74	5
24a	37.33	136.80	108	38	70	90	53 2.74	5
240	37.50	136.40	108	38	90	90	53 2.74	5
24C	37.83	136.00	108	38	110	90	53 2.74	5
20a 25h	38.17	137.87	108	38	70	90	40 2.74	5 5
250	30.30	137.33	100	30 20	90	90	40 2.74	5 5
200	30.50	138.80	100	30	70	90	40 2.74	5
20a 26h	30 33	138.00	108	38	0 00	90 00	30 2.74	5
200 26c	39.55	137.80	108	38	110	90 QN	30 2.74	5
200 27a	40 17	139 33	108	38	70	90	16 2 74	5
27b	40.33	138.80	108	38	90	90	16 2.74	5
27c	40.42	138.27	108	38	110	90	16 2.74	5
28a	41.42	139.53	108	38	70	90	0 2.74	5
28b	41.42	139.00	108	38	90	90	0 2.74	5
28c	41.42	138.40	108	38	110	90	0 2.74	5
29a	42.50	139.53	108	38	70	90	2 2.74	5
29b	42.50	139.00	108	38	90	90	2 2.74	5

29c	42.50	138.40	108	38	110	90	2	2.74	5
30a	43.50	139.60	108	38	70	90	9	2.74	5
30b	43.58	139.07	108	38	90	90	9	2.74	5
30c	43.67	138.53	108	38	110	90	9	2.74	5
31a	44.58	140.00	108	38	70	90	19	2.74	5
31b	44.67	139.47	108	38	90	90	19	2.74	5
31c	44.75	138.93	108	38	110	90	19	2.74	5
32a	45.58	140.53	108	38	70	90	28	2.74	5
32b	45.67	140.00	108	38	90	90	28	2.74	5
32c	45.83	139.53	108	38	110	90	28	2.74	5
33a	46.50	141.47	108	38	70	90	31	2.74	5
33b	46.75	141.00	108	38	90	90	31	2.74	5
33c	47.00	140.60	108	38	110	90	31	2.74	5
34a	47.25	142.53	108	38	70	90	34	2.74	5
34b	47.50	142.07	108	38	90	90	34	2.74	5
34c	47.75	141.67	108	38	110	90	34	2.74	5
35a	46.50	142.67	108	38	70	90	160	2.74	5
35b	46.33	142.27	108	38	90	90	160	2.74	5
35c	46.08	141.80	108	38	110	90	160	2.74	5
36a	45.58	143.53	108	38	70	90	151	2.74	5
36b	45.42	143.00	108	38	90	90	151	2.74	5
36c	45.25	142.53	108	38	110	90	151	2.74	5
37a	44.75	144.40	108	38	70	90	146	2.74	5
37b	44.58	143.93	108	38	90	90	146	2.74	5
37c	44.29	143.53	108	38	110	90	146	2.74	5

Рис. 3. Схема разбиения на подобласти для моделирования волн, порожденных модельными цунамигенными землетрясениями с магнитудой 7.8.

Рис. 4. Рельеф дна расчетной подобласти «78-1а». Указаны точки привязки защищаемых пунктов.

Рис. 5. Рельеф дна расчетной подобласти «78-1b». Указаны точки привязки защищаемых пунктов.

Рис. 6. Рельеф дна расчетной подобласти «78-2». Указаны точки привязки защищаемых пунктов.

Рис. 7. Рельеф дна расчетной подобласти «78-3». Указаны точки привязки защищаемых пунктов.

Рис. 8. Рельеф дна расчетной подобласти «78-4». Указаны точки привязки защищаемых пунктов.

Рис. 9. Рельеф дна расчетной подобласти «78-5». Указаны точки привязки защищаемых пунктов.

Аналогичная работа была выполнена для модельных источников с магнитудой 8.4 (**Приложение 2**). Таким образом, для совокупности модельных землетрясений с магнитудой 8.4 (Рис. 10) были выделены 3 расчетные подобласти. Параметры соответствующих источников в принятой модели механизма цунамигенного землетрясения приведены в таблице (Таблица 2).

Таблица 2 Параметры очагов цунамигенных землетрясений с магнитудой 8.4.

ID	У	Х	L	W	DE	LA	ΤE	D0	H_top
2b	53.40	161.25	215	75	15	90	30	6.1	5
2d	53.80	160.25	215	75	15	90	30	5.5	25
4b	51.70	159.25	215	75	15	90	35	6.1	5
4d	52.10	158.30	215	75	15	90	35	5.5	25
6b	50.10	157.28	215	75	15	90	37	6.1	5
6d	50.60	156.45	215	75	15	90	37	5.5	25
8b	48.35	155.45	215	75	15	90	35	6.1	5
8d	48.80	154.50	215	75	15	90	35	5.5	25
10b	46.75	153.35	215	75	15	90	42	6.1	5
10d	47.25	152.40	215	75	15	90	42	5.5	25
12b	45.20	150.85	215	75	15	90	48	6.1	5
12d	45.76	150.00	215	75	15	90	48	5.5	25
14b	43.75	148.20	215	75	15	90	56	6.1	5
14d	44.30	147.30	215	75	15	90	56	5.5	25
16b	42.40	145.40	215	75	15	90	58	6.1	5
16d	43.00	144.60	215	75	15	90	58	5.5	25
18b	41.36	142.71	215	75	15	90	58	6.1	5
18d	41.85	142.00	215	75	15	90	58	5.5	25

Рис. 10. Схема глобальной расчетной области. Указаны точки привязки очагов цунамигенных землетрясений с магнитудой 8.4 и защищаемых пунктов.

Схематическое расположение этих подобластей (Рис. 11), рельеф дна которых был оцифрован с шагом 15 секунд, показывает, что они, частично пересекаясь, включают соответствующие защищаемые пункты и модельные землетрясения. Географические координаты подобластей таковы:

	Географические координаты расчетных подобластей для цунамигенных землетрясений с магнитудой 8.4										
ID	Минимальная Максимальная Минимальная Максимальная										
	Восточная долгота	Восточная долгота	Северная широта	Северная широта							
84-1	155	170	49	61	Рис. 12						
84-2	145	167	42.5	57	Рис. 13						
84-3	139	161	39	53	Рис. 14						

Рис. 11. Схема разбиения на подобласти для моделирования волн, порожденных модельными цунамигенными землетрясениями с магнитудой 8.4.

Рис. 12. Рельеф дна расчетной подобласти «84-1». Указаны точки привязки защищаемых пунктов.

Рис. 13. Рельеф дна расчетной подобласти «84-2». Указаны точки привязки защищаемых пунктов.

Рис. 14. Рельеф дна расчетной подобласти «84-3». Указаны точки привязки защищаемых пунктов.

2. Результаты расчетов

Собственно результаты расчетов оформлены в виде соответствующих баз данных. Материалы их предварительной обработки представлены в виде Приложений к настоящему отчету.

В качестве базовых представляются результаты, рассчитанные на 15-секундных сетках в подобластях, перечисленных в предыдущем разделе. Все расчеты проводились с помощью алгоритмического и программного обеспечения, характеристики которого детально описаны в отчетах исполнителей по контракту № 1н-07 от 22 марта 2007. Необходимые модификации в основном касались некоторого усовершенствования средств управления расчетом, а также представления информации, хранимой в базах данных. Здесь следует указать на возможность изменения масштаба отрисовки гистограмм и мареограмм с помощью дополнительной строки в файле Kamchatka.ini:

;Значение masshtab_vertical задавать в виде вещественного числа. masshtab_vertical=1.5

Величина masshtab_vertical задается в метрах.

Краткие аннотации прилагаемых к отчету материалов (файлов) приведены в Приложении 3 – файл List_of_Files.doc.

Приложение 4 содержит иллюстрации результатов, рассчитанных на 15-секундной сетке в подобластях «78-1а», «78-1b», «78-2», «78-3», «78-4», «78-5» для источников магнитуды 7.8:

- общая схема расчетной области с размещением источников и защищаемых пунктов, схема последующего разбиения на подобласти,
- рельеф дна расчетной области,
- картины свечения для соответствующих источников,
- гистограммы с распределениями максимальных, минимальных высот волн, а также «размаха волн» полусуммы абсолютных значений минимальных и максимальных высот волн по всем защищаемым пунктам,
- экстремальные мареограммы в пунктах их «наблюдения».

Файлы: 78-Glow-work-1a.doc, 78-Glow-work-1b.doc, 78-Glow-work-2.doc, 78-Glow-work-3.doc, 78-Glow-work-4.doc, 78-Glow-work-5.doc.

Приложение 5 содержит иллюстрации результатов, рассчитанных на 15-секундной сетке в подобластях «84-1», «84-2», «84-3» для источников магнитуды 8.4:

- общая схема расчетной области с размещением источников и защищаемых пунктов, схема последующего разбиения на подобласти,
- рельеф дна расчетной области,
- картины свечения для соответствующих источников,
- гистограммы с распределениями максимальных, минимальных высот волн, а также «размаха волн» полусуммы абсолютных значений минимальных и максимальных высот волн по всем защищаемым пунктам,
- экстремальные мареограммы в пунктах их «наблюдения».

Файлы: 84-Glow-work-1.doc 84-Glow-work-2.doc 84-Glow-work-3.doc.

Принятая исполнителями методика расчета с выделением подобластей потребовала дополнительного обоснования и тщательного анализа, сравнения и сопоставления полученных результатов. Такая работа была выполнена и ее результаты приведены в соответствующих Приложениях.

Так, **Приложение 6** содержит материалы упомянутых выше сравнений по материалам расчетов для источников магнитуды 7.8:

- Графики, размещенные в файле 78-3-Comp-29b.doc, иллюстрируют сравнение результатов расчетов распространения цунами от источника «29b» с магнитудой 7.8 по глобальной области на одноминутной сетке (черные кривые с именем «1 m») и в подобласти «78-3» на одноминутной сетке (синие кривые с именем «1 m-sd»), а также с расчетом в этой же подобласти на 15-секундной сетке (красные кривые с именем «15s»).
- Графики, размещенные в файле **78-3-Comp-37b.doc**, иллюстрируют сравнение результатов расчетов распространения цунами от источника «37b» с магнитудой 7.8 по глобальной области на одноминутной сетке (**черные** кривые с именем «1 m») и в подобласти «78-3» на одноминутной сетке (**синие** кривые с именем «1 m-sd»), а также с расчетом в этой же подобласти на 15-секундной сетке (**красные** кривые с именем «15s»).
- Графики, размещенные в файле **78-4-Comp-19b.doc**, иллюстрируют сравнение результатов расчетов распространения цунами от источника «19b» с магнитудой 7.8 по глобальной области на одноминутной сетке (черные кривые с именем «1 m») и в подобласти «78-4» на одноминутной сетке (синие кривые с именем «1 m-4»), а также с расчетом в этой же подобласти на 15-секундной сетке (красные кривые с именем «15s»).
- Графики, размещенные в файле **78-4-Comp-28b.doc**, иллюстрируют сравнение результатов расчетов распространения цунами от источника «28b» с магнитудой 7.8 по глобальной области на одноминутной сетке (черные кривые с именем «1 m») и в подобласти «78-4» на одноминутной сетке (синие кривые с именем «1 m-4»), а также с расчетом в этой же подобласти на 15-секундной сетке (красные кривые с именем «15s»).
- Графики, размещенные в файле **78-4-Comp-34b.doc**, иллюстрируют сравнение результатов расчетов распространения цунами от источника «34b» с магнитудой 7.8 по глобальной области на одноминутной сетке (**черные** кривые с именем «1 m») и в подобласти «78-4» на 15-секундной сетке (**красные** кривые с именем «15s»).

Близкие по характеру результаты, но уже для источников с магнитудой 8.4 приведены в **Прило**жении 7:

- Графики, размещенные в файле **Comp-12b-84.doc**, иллюстрируют сравнение результатов расчетов распространения цунами от источника «12b » с магнитудой 8.4 по глобальной области на одноминутной сетке (**черные** кривые с именем «1 m») и на 15-секундной сетке в подобластях «84-3» (**синие** кривые с именем «15 s-3»), «84-2» (**красные** кривые с именем «15s-2»)
- Графики, размещенные в файле **Comp-2d-84.doc**, иллюстрируют сравнение результатов расчетов распространения цунами от источника «2d» с магнитудой 8.4 по глобальной области на одноминутной сетке (**черные** кривые с именем «1 m») и на 15-секундной сетке в подобластях «84-1» (**зеленые** кривые с именем «15 s-1»), «84-2» (**красные** кривые с именем «15s-2»)
- Графики, размещенные в файле **Comp-4b-84.doc**, иллюстрируют сравнение результатов расчетов распространения цунами от источника «4b» с магнитудой 8.4 по глобальной области на

одноминутной сетке (**черные** кривые с именем «1 m») и на 15-секундной сетке в подобластях «84-1» (**зеленые** кривые с именем «15 s-1»), «84-2» (**красные** кривые с именем «15s-2»)

- Графики, размещенные в файле **Comp-4d-84.doc**, иллюстрируют сравнение результатов расчетов распространения цунами от источника «4d» с магнитудой 8.4 по глобальной области на одноминутной сетке (**черные** кривые с именем «1 m») и на 15-секундной сетке в подобластях «84-1» (**зеленые** кривые с именем «15 s-1»), «84-2» (**красные** кривые с именем «15s-2»)
- Графики, размещенные в файле **Comp-6b-84.doc**, иллюстрируют сравнение результатов расчетов распространения цунами от источника «6b » с магнитудой 8.4 по глобальной области на одноминутной сетке (**черные** кривые с именем «1 m») и на 15-секундной сетке в подобластях «84-3» (**синие** кривые с именем «15 s-3»), «84-2» (**красные** кривые с именем «15s-2»)
- Графики, размещенные в файле **Comp-6d-84.doc**, иллюстрируют сравнение результатов расчетов распространения цунами от источника «6d » с магнитудой 8.4 по глобальной области на одноминутной сетке (**черные** кривые с именем «1 m») и на 15-секундной сетке в подобластях «84-3» (**синие** кривые с именем «15 s-3»), «84-2» (**красные** кривые с именем «15s-2»)
- Графики, размещенные в файле **Comp-12d-84.doc**, иллюстрируют сравнение результатов расчетов распространения цунами от источника «12d » с магнитудой 8.4 по глобальной области на одноминутной сетке (**черные** кривые с именем «1 m») и на 15-секундной сетке в подобластях «84-3» (**синие** кривые с именем «15 s-3»), «84-2» (**красные** кривые с именем «15s-2»)
- Графики, размещенные в файле **Comp-2b-84.doc**, иллюстрируют сравнение результатов расчетов распространения цунами от источника «2b» с магнитудой 8.4 по глобальной области на одноминутной сетке (**черные** кривые с именем «1 m») и на 15-секундной сетке в подобластях «84-1» (**зеленые** кривые с именем «15 s-1»), «84-2» (**красные** кривые с именем «15s-2»).

Выбор источников здесь был сделан так, чтобы в каждой подобласти были рассмотрены достаточно удаленные друг от друга цунамигенные землетрясения.

Иллюстрации результатов, рассчитанных **на одноминутной сетке в глобальной области** для источников магнитуды 7.8: общая схема расчетной области с размещением источников и защищаемых пунктов, схема последующего разбиения на подобласти, рельеф дна расчетной области, картины свечения для представительного набора различных источников, гистограмма с распределениями максимальных, минимальных высот волн, а также «размаха волн» – полусуммы абсолютных значений минимальных и максимальных высот волн по всем защищаемым пунктам, экстремальные мареограммы в пунктах их «наблюдения».

Файл Glow-work-78.doc.

Иллюстрации результатов, рассчитанных **на одноминутной сетке в глобальной области** для источников магнитуды 8.4: общая схема расчетной области с размещением источников и защищаемых пунктов, схема последующего разбиения на подобласти, рельеф дна расчетной области, картины свечения для представительного набора различных источников, гистограмма с распределениями максимальных, минимальных высот волн, а также «размаха волн» – полусуммы абсолютных значений минимальных и максимальных высот волн по всем защищаемым пунктам, экстремальные мареограммы в пунктах их «наблюдения».

 Φ айл Glow-work_84.doc.

Краткие аннотации прилагаемых к отчету материалов (файлов). Файл List_of_Files.doc. Иллюстрации результатов, рассчитанных **на 15-секундной сетке в подобластях** «78-1а», «78-1b», «78-2», «78-3», «78-4», «78-5» для источников магнитуды 7.8: общая схема расчетной области с размещением источников и защищаемых пунктов, схема последующего разбиения на подобласти, рельеф дна расчетной области, картины свечения для соответствующих источников, гистограммы с распределениями максимальных, минимальных высот волн, а также «размаха волн» – полусуммы абсолютных значений минимальных и максимальных высот волн по всем защищаемым пунктам, экстремальные мареограммы в пунктах их «наблюдения».

Файлы 78-Glow-work-1a.doc, 78-Glow-work-1b.doc, 78-Glow-work-2.doc, 78-Glow-work-3.doc, 78-Glow-work-4.doc, 78-Glow-work-5.doc. Иллюстрации результатов, рассчитанных **на 15-секундной сетке в подобластях** «84-1», «84-2», «84-3» для источников магнитуды 8.4: общая схема расчетной области с размещением источников и защищаемых пунктов, схема последующего разбиения на подобласти, рельеф дна расчетной области, картины свечения для соответствующих источников, гистограммы с распределениями максимальных, минимальных высот волн, а также «размаха волн» – полусуммы абсолютных значений минимальных и максимальных высот волн по всем защищаемым пунктам, экстремальные мареограммы в пунктах их «наблюдения».

Файлы 84-Glow-work-1.doc 84-Glow-work-2.doc 84-Glow-work-3.doc.

Приложение 6

Иллюстрации сравнения результатов расчетов распространения цунами от источника «29b» с магнитудой 7.8 по глобальной области на одноминутной сетке (черные кривые с именем «1 m») и в подобласти «78-3» на одноминутной сетке (синие кривые с именем «1 m-sd»), а также с расчетом в этой же подобласти на 15-секундной сетке (красные кривые с именем «15s»). Файл 78-3-Сотр-29b.doc.

Иллюстрации сравнения результатов расчетов распространения цунами от источника «37b» с магнитудой 7.8 по глобальной области на одноминутной сетке (черные кривые с именем «1 m») и в подобласти «78-3» на одноминутной сетке (синие кривые с именем «1 m-sd»), а также с расчетом в этой же подобласти на 15-секундной сетке (красные кривые с именем «15s»). Файл 78-3-Сомр-37b.doc.

Иллюстрации сравнения результатов расчетов распространения цунами от источника «19b» с магнитудой 7.8 по глобальной области на одноминутной сетке (черные кривые с именем «1 m») и в подобласти «78-4» на одноминутной сетке (синие кривые с именем «1 m-4»), а также с расчетом в этой же подобласти на 15-секундной сетке (красные кривые с именем «15s»). Файл 78-4-Сотр-19b.doc.

Иллюстрации сравнения результатов расчетов распространения цунами от источника «28b» с магнитудой 7.8 по глобальной области на одноминутной сетке (черные кривые с именем «1 m») и в подобласти «78-4» на одноминутной сетке (синие кривые с именем «1 m-4»), а также с расчетом в этой же подобласти на 15-секундной сетке (красные кривые с именем «15s»). Файл 78-4-Сотр-28b.doc.

Иллюстрации сравнения результатов расчетов распространения цунами от источника «34b» с магнитудой 7.8 по глобальной области на одноминутной сетке (черные кривые с именем «1 m») и в подобласти «78-4» на 15-секундной сетке (красные кривые с именем «15s»). Файл 78-4-Сотр-34b.doc.

Приложение 7

Иллюстрации сравнения результатов расчетов распространения цунами от источника «12b » с магнитудой 8.4 по глобальной области на одноминутной сетке (черные кривые с именем «1 m») и на 15-секундной сетке в подобластях «84-3» (синие кривые с именем «15 s-3»), «84-2» (красные кривые с именем «15s-2»).

Файл Comp-12b-84.doc.

Иллюстрации сравнения результатов расчетов распространения цунами от источника «2d» с магнитудой 8.4 по глобальной области на одноминутной сетке (**черные** кривые с именем «1 m») и на 15-секундной сетке в подобластях «84-1» (**зеленые** кривые с именем «15 s-1»), «84-2» (**красные** кривые с именем «15s-2»).

Файл Сотр-2d-84.doc.

Иллюстрации сравнения результатов расчетов распространения цунами от источника «4b» с магнитудой 8.4 по глобальной области на одноминутной сетке (**черные** кривые с именем «1 m») и на 15-секундной сетке в подобластях «84-1» (**зеленые** кривые с именем «15 s-1»), «84-2» (**красные** кривые с именем «15s-2»).

Файл Comp-4b-84.doc.

Иллюстрации сравнения результатов расчетов распространения цунами от источника «4d» с магнитудой 8.4 по глобальной области на одноминутной сетке (**черные** кривые с именем «1 m») и на 15-секундной сетке в подобластях «84-1» (**зеленые** кривые с именем «15 s-1»), «84-2» (**красные** кривые с именем «15s-2»).

Файл Сотр-4d-84.doc.

Иллюстрации сравнения результатов расчетов распространения цунами от источника «6b » с магнитудой 8.4 по глобальной области на одноминутной сетке (**черные** кривые с именем «1 m») и на 15-секундной сетке в подобластях «84-3» (**синие** кривые с именем «15 s-3»), «84-2» (**красные** кривые с именем «15s-2»).

 Φ айл Comp-6b-84.doc.

Иллюстрации сравнения результатов расчетов распространения цунами от источника «6d » с магнитудой 8.4 по глобальной области на одноминутной сетке (черные кривые с именем «1 m») и на 15-секундной сетке в подобластях «84-3» (синие кривые с именем «15 s-3»), «84-2» (красные кривые с именем «15s-2»).

 Φ айл Comp-6d-84.doc.

Иллюстрации сравнения результатов расчетов распространения цунами от источника «12d » с магнитудой 8.4 по глобальной области на одноминутной сетке (черные кривые с именем «1 m») и на 15-секундной сетке в подобластях «84-3» (синие кривые с именем «15 s-3»), «84-2» (красные кривые с именем «15s-2»).

Файл Comp-12d-84.doc.

Иллюстрации сравнения результатов расчетов распространения цунами от источника «2b» с магнитудой 8.4 по глобальной области на одноминутной сетке (**черные** кривые с именем «1 m») и на 15-секундной сетке в подобластях «84-1» (**зеленые** кривые с именем «15 s-1»), «84-2» (**красные** кривые с именем «15s-2»).

Файл Comp-2b-84.doc.