Российская академия наук Сибирское отделение Институт вычислительных технологий

> "УТВЕРЖДАЮ" Директор ИВТ СО РАН

академик _____ Ю. И. Шокин

15 сентября 2010 года

«Расчет высот волн цунами для защищаемых пунктов побережья Дальнего востока РФ для модельных очагов удаленных цунамигенных землетрясений, детальные расчеты на основе уточненной батиметрии для модельных очагов ближней зоны»

ПРОМЕЖУТОЧНЫЙ ИНФОРМАЦИОННЫЙ ОТЧЕТ

на выполнение НИОКР для государственных нужд по Федеральной целевой программе

"Снижение рисков и смягчение последствий чрезвычайных ситуаций природного и техногенного характера

в Российской Федерации до 2010 года "

(контракт № 1н-10 от 01 февраля 2010 г.)

Руководитель работ г.н.с., д.ф.-м.н., профессор

_____ Л. Б. Чубаров

Новосибирск, 2010 г

Исполнители:

д.ф.-м.н.

м.н.с.

инженер-исследователь

В.К. Гусяков Д.Л. Чубаров С.А. Бейзель

Содержание

Содержание	3
1. Введение	4
2. Краткая характеристика выполненных работ	4
3. Защищаемые пункты	5
4. Модельные цунамигенные землетрясения и соответствующие начальные возмущения	17
5. Результаты расчетов: картины распространения энергии волн цунами.	26
6. Сравнение результатов, рассчитанных на сетках с различной детальностью	45
7. Заключение	46

1. Введение

ПРОМЕЖУТОЧНЫЙ ИНФОРМАЦИОННЫЙ ОТЧЕТ, согласно календарному плану, посвящен проведению детального моделирования характеристик проявления волн цунами у защищаемых пунктов побережья Камчатки, Курильских островов, Сахалина и Приморья с использованием уточненных батиметрических данных, представленных на регулярной 15 секундной сетке.

В 2007 г. аналогичные расчеты проводились на единственной доступной в то время одноминутной сетке и, как показали методические расчеты, проведенные исполнителями в 2008-2009 гг., нуждались в уточнении. Результаты этих методических расчетов показали, что переход на более детальную сетку приводит, как правило, к увеличению абсолютных значений высот волн, рассчитываемых в прибрежных точках.

Излагаемые ниже результаты были получены с применением оправдавшей себя методики выполнения производственных вычислительных экспериментов, которая предполагает

- 1. разработку или уточнение системы модельных очагов цунамигенных землетрясений,
- выбор глобальной расчетной области, содержащей все заданные защищаемые пункты и прилегающие к ним акватории вместе с зонами всех модельных очагов цунамигенных землетрясений, построение соответствующего цифрового батиметрического массива данных,
- 3. необходимую адаптацию цифровой батиметрии расчетной области к особенностям численных алгоритмов моделирования трансформации волн цунами,
- 4. проведение предварительных расчетов в «глобальной» расчетной области с использованием батиметрических данных промежуточной детальности,
- 5. обработку результатов расчетов, их интерпретацию с целью определения зон влияния цунамигенных землетрясений,
- 6. выделение малых расчетных подобластей, содержащих взаимно связанные по степени цунамиопасности защищаемые пункты и очаги цунамигенных землетрясений; при этом допускается множественное вхождение некоторых «пограничных» защищаемых пунктов и очагов в различные подобласти; построение соответствующих детальных цифровых батиметрических массивов данных,
- 7. необходимую адаптацию цифровой батиметрии малых расчетных областей к особенностям численных алгоритмов моделирования трансформации волн цунами,
- 8. проведение производственных серийных расчетов с использованием высокопроизводительных вычислительных устройств в малых расчетных подобластях с использованием уточненных батиметрических данных,
- 9. интерпретацию полученных результатов и формирование соответствующих баз данных.

2. Краткая характеристика выполненных работ

Решавшаяся на отчетном этапе работ задача состоит в создании базы данных с максимальными значениями уровней свободной поверхности воды в заданном наборе защищаемых пунктов с использованием уточненной 15 секундной цифровой батиметрии, основанной как на доступных батиметрических данных, так и на фрагментах цифровых карт, изготовленных с использованием оригинальных вычислительных алгоритмов в рамках одного из контрактов ФЦП в 2009 г.

Методика проведения вычислительных экспериментов на этом этапе не претерпела существенных изменений. Как и на предыдущих стадиях работы в 2007, 2008 и 2009 гг., первым шагом является уточнение перечня защищаемых пунктов, их географических координат, определение особенностей прилегающего рельефа суши, конфигурации береговой линии и батиметрии прибрежных акваторий. На следующем шаге выполняется анализ геофизической обстановки и определяются потенциально опасные зоны размещения цунамигенных землетрясений, уточняются параметры моделей этих землетрясений, рассчитываются контуры соответствующих зон начальных возмущений. С учетом взаимного расположения этих зон, позиций защищаемых пунктов, предполагаемых трасс распространения цунами от области генерации начального возмущения к защищаемому побережью определяется расчетная область и производится привязка к этой области координат защищаемых пунктов и эпицентров цунамигенных землетрясений.

Затем с помощью средств информационно-вычислительной системы WinITDB производится предварительный расчет изохрон цунами от выявленных потенциально опасных зон. С использованием полученных временных характеристик определяются необходимое физическое время моделирования явлений, а также временные и географические параметры для реализации предложенной исполнителями технологии проведения расчетов.

Детальное описание этой методики, а также результаты ее тестирования на модельных и реальных задачах также были изложены в отчетах по контракту № 2н-08 от 21 мая 2008 г. В этом же отчете приведено детальное описание методик расчета начальных возмущений, порожденных модельными цунамигенными землетрясениями, и методик моделирования трансформации волн цунами на трассах от источника возмущения до защищаемого побережья. Эти методики обеспечивают определение мареограмм и экстремальных характеристик волн вблизи защищаемых пунктов, а также картин распределения волновой энергии по результатам моделирования («свечения»).

Первые расчеты, выполненные на одноминутной сетке, позволили получить качественные и количественные оценки относительной цунамиопасности моделируемых землетрясений и сопоставить значимость проявления волн цунами в различных защищаемых пунктах побережья. Таким образом, исполнителями на первом этапе работы получены следующие результаты:

- 1. определен перечень защищаемых пунктов, уточнены их географические координаты;
- 2. определены потенциально опасные для исследуемого побережья зоны удаленных цунамигенных землетрясений;
- 3. определены параметры «глобальной» расчетной области; построены соответствующие массивы цифровой батиметрии, выполнена привязка защищаемых пунктов к контуру оцифрованной береговой линии;
- 4. определены параметры модельных очагов цунамигенных землетрясений, рассчитаны соответствующие поля начальных возмущений;
- 5. выполнены расчеты на одноминутной сетке по моделированию цунами, порожденных модельными очагами цунамигенных землетрясений, определены экстремальные характеристики проявления цунами в защищаемых пунктах, рассчитаны поля «свечений»;
- 6. определены параметры «малых» расчетных областей; построены соответствующие массивы цифровой батиметрии, выполнена привязка защищаемых пунктов к контурам оцифрованных береговых линий;
- 7. подготовлены исходные данные для проведения уточняющих расчетов на измельченных (до 15 секунд) сетках;
- 8. выполнены расчеты в «малых» подобластях на детальной 15 секундной сетке по моделированию цунами, порожденных модельными очагами цунамигенных землетрясений, определены экстремальные характеристики проявления цунами в защищаемых пунктах, рассчитаны поля «свечений»;

3. Защищаемые пункты

Все заданные Заказчиком защищаемые пункты разделены на 7 частично пересекающих-ся групп:

- 1 пункты Камчатского УГМС;
- 2 ГМС Камчатского УГМС;
- 3 пункты Сахалинского УГМС, схема 1;
- 4 пункты Сахалинского УГМС, схема 2;
- 5 пункты Сахалинского УГМС, схема 3;
- 6 пункты Приморского УГМС;
- 7 станции Приморского УГМС.

В приведенной ниже таблице (Таблица 1) перечислены указанные Заказчиком защищаемые пункты, индекс, определяющий их принадлежность одной из групп, «исходные» географические координаты защищаемых пунктов, их целочисленные координаты в терминах номеров узлов выбранного Исполнителем фрагмента минутной сетки, соответствующие им физические координаты, отклонение этих значений от «исходных» и значения глубин. Иллюстрация распределения глубин под «защищаемыми пунктами» на минутной сетке приведена на Рис. 2. Без учета этих значений входных параметров невозможна адекватная интерпретация результатов вычислительных экспериментов.

	name	Reg index	Ν	E	j	i	N-1 min	E-1 min	d-N	d-E	Deptn- 1 min
1	Apuka	1	60.46	169.58	1707	2556	60.43333	169.5833	0.026667	-0.00333	3.95
2	Pahachi	1	60.56	169.14	1714	2529	60.55	169.1333	0.01	0.006667	3
3	Tilichiki	1	60.43	163.18	1705	2344	60.4	166.05	0.03	-2.87	2
4	Korf	1	60.37	166.01	1703	2342	60.36667	166.0167	0.003333	-0.00667	1.95
5	Vyvenka	1	60.19	165.45	1692	2310	60.18333	165.4833	0.006667	-0.03333	2.88
6	ll'pyrskoe	1	59.96	164.18	1679	2232	59.96667	164.1833	-0.00667	-0.00333	2
7	Tymlat	1	59.5	163.18	1651	2173	59.5	163.2	0	-0.02	2
8	Ossora	1	59.25	163.07	1636	2166	59.25	163.0833	0	-0.01333	3.04
9	Kostroma	1	59.04	163.18	1623	2172	59.03333	163.1833	0.006667	-0.00333	2
10	Karaga	1	59.11	163.12	1628	2168	59.11667	163.1167	-0.00667	0.003333	2
11	Ivashka	1	58.57	162.3	1595	2120	58.56667	162.3167	0.003333	-0.01667	1.95
12	Ust'-Kamchatsk	1	56.24	162.5	1454	2131	56.21667	162.5	0.023333	0	4.03
13	Petropavlovsk- Kamchatskii	1	53.05	158.63	1261	1899	53	158.6333	0.05	-0.00333	1.51
14	Nikol'skoe	1	55.2	166.02	1394	2337	55.21667	165.9333	-0.01667	0.086667	1.94
15	Apuka	2	60.46	169.58	1707	2556	60.43333	169.5833	0.026667	-0.00333	3.95
16	Korf	2	60.37	166.01	1703	2342	60.36667	166.0167	0.003333	-0.00667	1.95
17	Ossora	2	59.25	163.07	1636	2166	59.25	163.0833	0	-0.01333	3.04
18	Ozernaya	2	57.65	163.23	1540	2175	57.65	163.2333	0	-0.00333	3.1
19	Afrika	2	56.18	163.3	1451	2179	56.16667	163.3	0.013333	0	1.07
20	Kronoki	2	54.58	161.21	1355	2052	54.56667	161.1833	0.013333	0.026667	4.34
21	Semyachiki	2	54.2	159.98	1330	1982	54.15	160.0167	0.05	-0.03667	0.94
22	Petropavlovskii mayak	2	52.88	158.72	1254	1904	52.88333	158.7167	-0.00333	0.003333	0.97
23	Vodopadnaya	2	51.82	158.1	1190	1868	51.81667	158.1167	0.003333	-0.01667	9.17
24	Lopatka	2	50.87	156.67	1133	1781	50.86667	156.6667	0.003333	0.003333	2.14
25	Nikol'skoe	2	55.2	166.02	1394	2337	55.21667	165.9333	-0.01667	0.086667	1.94
26	Shumshu	3	50.74	156.31	1120	1766	50.65	156.4167	0.09	-0.10667	2.57
27	Severo-Kuril'sk	3	50.68	156.12	1121	1750	50.66667	156.15	0.013333	-0.03	8
28	Simushir	3	46.82	151.78	888	1491	46.78333	151.8333	0.036667	-0.05333	4.63
29	Urup	3	45.96	149.99	833	1386	45.86667	150.0833	0.093333	-0.09333	3.11
30	Burevestnik	3	44.92	147.61	777	1239	44.93333	147.6333	-0.01333	-0.02333	2.05
31	Malokuril'skoe	3	43.87	146.82	715	1190	43.9	146.8167	-0.03	0.003333	61.18
32	Yuzhno-Kuril'sk	3	44.04	145.85	722	1132	44.01667	145.85	0.023333	0	5.02
33	M.Kril'on	4	45.9	142.08	835	906	45.9	142.0833	0	-0.00333	5.41
34	Nevel'sk	4	46.68	141.86	882	892	46.68333	141.85	-0.00333	0.01	8.03
35	Holmsk	4	47.06	142.06	904	903	47.05	142.0333	0.01	0.026667	9.43
36	ll'inskii	4	47.99	142.21	960	912	47.98333	142.1833	0.006667	0.026667	4.75
37	Uglegorsk	4	49.08	142.07	1025	902	49.06667	142.0167	0.013333	0.053333	7.16
38	Pil'vo (Smirnyh)	4	50.04	142.18	1084	910	50.05	142.15	-0.01	0.03	1
39	Aleksandrovsk- Sahalinskii	4	50.9	142.15	1136	909	50.91667	142.1333	-0.01667	0.016667	3.81
40	De-Kastri	4	51.48	140.77	1169	830	51.46667	140.8167	0.013333	-0.04667	2

Таблица 1. Защищаемые пункты.

41	Sov.Gavan'	4	48.97	140.29	1021	802	49	140.35	-0.03	-0.06	2
42	Grossevichi	4	47.99	139.53	960	754	47.98333	139.55	0.006667	-0.02	4.96
43	Severo-Kuril'sk	5	50.68	156.12	1121	1750	50.66667	156.15	0.013333	-0.03	8
44	Odoptu	5	53.37	143.17	1283	971	53.36667	143.1667	0.003333	0.003333	1.88
45	Komrvo	5	51.12	143.57	1148	995	51.11667	143.5667	0.003333	0.003333	2.8
46	Pogranichnoe	5	50.37	143.76	1103	1007	50.36667	143.7667	0.003333	-0.00667	0.63
47	M.Terpeniya	5	48.65	144.73	999	1065	48.63333	144.7333	0.016667	-0.00333	4.08
48	Poronaisk	5	49.22	143.09	1033	968	49.2	143.1167	0.02	-0.02667	0.96
49	Makarov	5	48.63	142.77	998	949	48.61667	142.8	0.013333	-0.03	5
50	Vzmor'e	5	47.85	142.51	951	933	47.83333	142.5333	0.016667	-0.02333	4.05
51	Starodubskoe	5	47.41	142.82	926	950	47.41667	142.8167	-0.00667	0.003333	1.87
52	Novikovo	5	46.37	143.35	864	981	46.38333	143.3333	-0.01333	0.016667	6.41
53	Korsakov	5	46.64	142.78	879	945	46.63333	142.7333	0.006667	0.046667	4.88
54	Kuril'sk	5	45.23	147.88	796	1253	45.25	147.8667	-0.02	0.013333	45.47
55	s. Maksimovka	6	46.09	137.89	846	658	46.08333	137.95	0.006667	-0.06	7.98
56	p. Ternei	6	45	136.6	782	581	45.01667	136.6667	-0.01667	-0.06667	21.58
57	p. Plastun	6	44.75	136.29	765	562	44.73333	136.35	0.016667	-0.06	18.9
58	p. Kamenka	6	44.46	136.02	747	542	44.43333	136.0167	0.026667	0.003333	15.48
59	s. Lidovka	6	44.43	135.87	745	535	44.4	135.9	0.03	-0.03	16
60	p. Rudnaya pris- tan'	6	44.36	135.82	742	532	44.35	135.85	0.01	-0.03	18
61	s. Veselyi Yar	6	43.96	135.45	717	510	43.93333	135.4833	0.026667	-0.03333	18.81
62	p. Ol'ga	6	43.75	135.29	702	496	43.68333	135.25	0.066667	0.04	6.95
63	s. Moryak- Rybolov	6	43.34	134.78	680	469	43.31667	134.8	0.023333	-0.02	16.04
64	s. Valentin	6	43.12	134.29	666	438	43.08333	134.2833	0.036667	0.006667	31
65	p. Glazkovka	6	43.07	134.17	664	432	43.05	134.1833	0.02	-0.01333	10.16
66	s. Sokolovka	6	44.12	133.86	653	414	42.86667	133.8833	1.253333	-0.02333	36.22
67	s. Kievka	6	42.91	133.7	651	402	42.83333	133.6833	0.076667	0.016667	8.3
68	d. Melkovodnoe	6	42.86	133.62	651	400	42.83333	133.65	0.026667	-0.03	16.93
69	buh. Uspeniya	6	42.82	133.52	650	393	42.81667	133.5333	0.003333	-0.01333	10.74
70	Vrangel'	6	42.72	133.07	646	363	42.75	133.0333	-0.03	0.036667	9.71
71	d. Beregovaya	6	42.76	133.08	647	362	42.76667	133.0167	-0.00667	0.063333	18.04
72	Nahodka	6	42.78	132.86	650	356	42.81667	132.9167	-0.03667	-0.05667	5.43
73	p. Livadiya	6	42.87	132.68	651	342	42.83333	132.6833	0.036667	-0.00333	23.9
74	Bol'shoi Kamen'	6	43.11	132.35	667	319	43.1	132.3	0.01	0.05	13
75	Vladivostok	6	43.13	131.92	670	294	43.15	131.8833	-0.02	0.036667	9.76
76	s. Andreevka	6	42.65	131.13	637	249	42.6	131.1333	0.05	-0.00333	1.84
77	OAO «"Morskoi port v buhte Troitsa»	6	42.64	131.08	637	246	42.6	131.0833	0.04	-0.00333	2.98
78	p. Zarubino	6	42.65	131.07	638	245	42.61667	131.0667	0.033333	0.003333	2.02
79	Zolotoi (mors-	7	47.32	138.97	919	719	47.3	138.9667	0.02	0.003333	14.92
80	Sosunovo (mors)	7	46.53	138.33	873	682	46.53333	138.35	-0.00333	-0.02	11.97
01	Malaya Kema	7	45.40	107.15	905	611		107 1007	0.02	0.01667	9.61
01	(ma)	1	40.42	137.15	805	011	40.4	137.1007	0.02	-0.01007	0.01
82	Rudnaya pristan' (morskaya)	7	44.36	135.82	742	532	44.35	135.85	0.01	-0.03	18
83	Preobrazhenie (morskaya)	7	42.9	133.91	653	414	42.86667	133.8833	0.033333	0.026667	36.22
84	Nahodka (mors- kaya)	7	42.78	132.86	650	356	42.81667	132.9167	-0.03667	-0.05667	5.43
85	Vladivostok	7	43.13	131.92	670	294	43.15	131.8833	-0.02	0.036667	9.76
86	Pos'et (mors- kaya)	7	42.66	130.8	641	228	42.66667	130.7833	-0.00667	0.016667	2.87

Рельеф дна «глобальной» расчетной области изображен на Рис. 1. На следующем рисунке (Рис. 2) приведены глубины в расчетных прибрежных точках, соответствующие каждому из защищаемых пунктов из таблицы (Таблица 1). Как видно из этого рисунка, в двух точках (Курильск - № 54 и Буревестник - № 30) глубины превосходят отметку 45 м, что связано с погрешностью одноминутной цифровой батиметрии и естественной неопределенностью в указании координат соответствующих пунктов. Отметим, что использованная исполнителями одноминутная цифровая батиметрия была получена прореживанием тридцатисекундной батиметрии «GEBCO-2008» в пределах от 129 до 180 градусов восточной долготы и от 39 до 62 градусов северной широты.

Рис. 1. Рельеф дна «глобальной» расчетной области

Рис. 2. Распределение глубин под защищаемыми пунктами

Рис. 3. . «Глобальная область»: синие точки – защищаемые пункты, черные кружочки – источники магнитуды 7.8, сиреневые ромбики – 8.1, зеленые треугольники – 8.4, оранжевые квадратики – 9.0.

Следуя изложенной выше методологии, исполнителями были проведены предварительные расчеты, выполнявшихся в «глобальной» расчетной области на 63000 секунд (17.5 часов) физического времени с использованием модифицированного в части уточнения азимутов направленности очагов цунамигенных землетрясений набора очагов, предложенных при выполнении контракта 2007 г.

Определенный в ходе анализа результатов этих расчетов общий характер проявлений очагов цунамигенных землетрясений в каждом из защищаемых пунктов позволил определить совокупность частично пересекающихся расчетных подобластей, расчеты в которых на рельефах, оцифрованных с пространственным шагом 15 секунд, обеспечили приемлемую точность определения экстремальных волновых характеристик. При этом пороговое значение полученной на минутной сетке максимальной амплитуды, на основании которого принималось решение о проведении или непроведении уточняющих расчетов для конкретного модельного источника в конкретном защищаемом пункте (или участке защищаемого побережья, включающего конкретный пункт), составляло 50 сантиметров.

В результате было выделено 6 расчетных подобластей, схематичное расположение и географические координаты которых приведены ниже. Географические координаты расчетных подобластей для цунамигенных землетрясений с магнитудой 7.8, 8.1 и 8.4 и времена моделирования в каждой из них указаны в таблице (Таблица 2). Перечни расположенных в этих подобластях защищаемых пунктов, их исходные и модифицированные координаты, а также соответствующие этим пунктам глубины, указаны в таблицах (

Таблица 3 – Таблица 8), а на рисунках (Рис. 5 – Рис. 10) – рельефы малых подобластей, цифровая батиметрия которых была получена на основе упомянутого выше массива тридцатисекундной батиметрии «GEBCO-2008» с использованием алгоритмов интерполяции. При этом исполнители столкнулись с определенными трудностями, вызванными неточностями и несовпадениями данных из батиметрических массивов «GEBCO-2008».

Таблица 2. Географические координаты расчетных подобластей для цунамигенных землетрясений с магнитудой 7.8, 8.1 и 8.4, а также продолжительность расчета в секундах физического времени

ID	Минимальная Восточная долгота	Максимальная Восточная долгота	Минимальная Северная широта	Максимальная Северная широта	Продолжительность расчета в секундах физического времени
Ι	142	160	43	55	43200
Π	153	167	46	57	43200
III	155	172	49	61	63000
IV	141	167	43	57	63000
V	149	172	45	61	63000
VI	155	178	49	61	43200

Global	Name	Ν	Е	N	E	Depth	Local	Распределение глубин под						
Index				15 sec	15 sec	15 sec	Index	защищаемыми пунктами на 15 секундной сетке						
22	Petropavlovskii mayak	52.88	158.72	52.88333	158.7042	2.5	1	Depth, m. ట సు -ు						
13	Petropavlovsk- Kamchatskii	53.05	158.63	53.0375	158.6167	1.5	2							
23	Vodopadnaya	51.82	158.1	51.81667	158.1083	18	3							
24	Lopatka	50.87	156.67	50.86667	156.6583	2	4	- ω						
26	Shumshu	50.74	156.31	50.65	156.4167	4.5	5	4 - 4						
27	Severo- Kuril'sk	50.68	156.12	50.66667	156.1333	1.5	6							
28	Simushir	46.82	151.78	46.77917	151.8375	2.875	7							
29	Urup	45.96	149.99	45.86667	150.0833	2.5	8	∞						
54	Kuril'sk	45.23	147.88	45.23333	147.8625	3.5	9	9 Po						
30	Burevestnik	44.92	147.61	44.93333	147.625	1	10							
31	Malokuril'skoe	43.87	146.82	43.87917	146.8125	5	11							
32	Yuzhno- Kuril'sk	44.04	145.85	44.02083	145.85	2.5	12	12 1 12 1						
44	Odoptu	53.37	143.17	53.375	143.1792	2.75	13	3 NO.						
45	Komrvo	51.12	143.57	51.11667	143.5667	1	14							
46	Pogranichnoe	50.37	143.76	50.375	143.7708	4	15							
47	M.Terpeniya	48.65	144.73	48.65417	144.7292	27.75	16							
48	Poronaisk	49.22	143.09	49.21667	143.0958	5.25	17							
49	Makarov	48.63	142.77	48.62083	142.7917	1.5	18							
50	Vzmor'e	47.85	142.51	47.84167	142.5292	2.25	19							
51	Starodubskoe	47.41	142.82	47.41667	142.8167	8	20							
52	Novikovo	46.37	143.35	46.36667	143.3458	0.75	21							
53	Korsakov	46.64	142.78	46.62917	142.7583	1.75	22	<u> </u>						

Таблица 3. Расчетная область № 1

Рис. 5. Рельеф дна 1-й расчетной подобласти

Global	Name	N	Е	N	E	Depth	Local	Расп	редел	ение г.	лубин по		
Index				15 sec	15 sec	15 sec	Index	защ на	защищаемыми пунктам на 15 секундной сетке				
14	Nikol'skoe	55.2	166.02	48.99583	154.9958	2	1	7.	De	pth, m.			
19	Afrika	56.18	163.3	56.16667	163.3125	13	2	30 -	20	10			
12	Ust'- Kamchatsk	56.24	162.5	56.22917	162.5	10.5	3				- N		
20	Kronoki	54.58	161.21	54.57917	161.1958	22.75	4						
21	Semyachiki	54.2	159.98	54.14583	160.0333	28.25	5				- ω		
22	Petropavlovskii mayak	52.88	158.72	52.88333	158.7042	2.5	6				4 -		
13	Petropavlovsk- Kamchatskii	53.05	158.63	53.0375	158.6167	5.25	7	_			5 –		
23	Vodopadnaya	51.82	158.1	51.81667	158.1083	18	8				ted p		
24	Lopatka	50.87	156.67	50.86667	156.6583	2	9				- 0° oints		
26	Shumshu	50.74	156.31	50.65	156.4167	4.5	10						
27	Severo- Kuril'sk	50.68	156.12	50.66667	156.1333	1.5	11				_ ∞		
											o		

Таблица 4. Расчетная область № 2

Рис. 6. Рельеф дна 2-й расчетной подобласти

Global Index	Name	N	E	N 15 sec	E 15 sec	Depth 15 sec	Local Index	Распределение глубин под защищаемыми пунктами на 15 секундной сетке						
14	Nikol'skoe	55.2	166.02	55.20833	165.9917	2	1	Depth, m.						
1	Apuka	60.46	169.58	60.44583	169.575	4.75	2	-10 0						
2	Pahachi	60.56	169.14	60.55833	169.1375	0.25	3							
3	Tilichiki	60.43	163.18	60.4125	166.05	3	4							
4	Korf	60.37	166.01	60.37083	166.0083	2	5	ω						
5	Vyvenka	60.19	165.45	60.18333	165.4583	2.5	6	4 -						
6	ll'pyrskoe	59.96	164.18	59.95417	164.1833	9	7	မ္း က က						
7	Tymlat	59.5	163.18	59.49583	163.2042	1	8							
8	Ossora	59.25	163.07	59.24583	163.0708	1.25	9							
9	Kostroma	59.04	163.18	59.0375	163.1833	33.5	10							
10	Karaga	59.11	163.12	59.12083	163.1292	0.75	11							
11	Ivashka	58.57	162.3	58.55833	162.3167	3	12							
18	Ozernaya	57.65	163.23	57.65	163.225	16.5	13							
19	Afrika	56.18	163.3	56.16667	163.3125	13	14							
12	Ust'-Kamchatsk	56.24	162.5	56.22917	162.5	10.5	15							
20	Kronoki	54.58	161.21	54.57917	161.1958	22.75	16							
21	Semyachiki	54.2	159.98	54.14583	160.0333	28.25	17	6-6-						
22	Petropavlovskii mayak	52.88	158.72	52.88333	158.7042	2.5	18							
13	Petropavlovsk- Kamchatskii	53.05	158.63	53.0375	158.6167	5.25	19	- 19 20						
23	Vodopadnaya	51.82	158.1	51.81667	158.1083	18	20	2						
24	Lopatka	50.87	156.67	50.86667	156.6583	2	21							
26	Shumshu	50.74	156.31	50.65	156.4167	4.5	22	23						
27	Severo- Kuril'sk	50.68	156.12	50.66667	156.1333	1.5	23							

Таблица 5. Расчетная область № 3.

Рис. 7. Рельеф дна 3-й расчетной подобласти

Global Index	Name	Ν	E	N 15 sec	E 15 sec	Depth 15 sec	Local Index	Распределение глубин под защищаемыми пунктами на 15 секундной сетке							
14	Nikol'skoe	55.2	166.02	55.20833	165.9917	2	1	Depth, m.							
19	Afrika	56.18	163.3	56.16667	163.3125	13	2	-30 -20 -10 0							
12	Ust'- Kamchatsk	56.24	162.5	56.22917	162.5	10.5	3								
20	Kronoki	54.58	161.21	54.57917	161.1958	22.75	4	– N							
21	Semyachiki	54.2	159.98	54.14583	160.0333	28.25	5	ω							
22	Petropavlovskii mayak	52.88	158.72	52.88333	158.7042	2.5	6	4 -							
13	Petropavlovsk- Kamchatskii	53.05	158.63	53.0375	158.6167	5.25	7								
23	Vodopadnaya	51.82	158.1	51.81667	158.1083	18	8								
24	Lopatka	50.87	156.67	50.86667	156.6583	2	9	∞							
26	Shumshu	50.74	156.31	50.65	156.4167	4.5	10	o – – – – – – – – – – – – – – – – – – –							
27	Severo- Kuril'sk	50.68	156.12	50.66667	156.1333	1.5	11								
28	Simushir	46.82	151.78	46.77917	151.8375	2.875	12								
29	Urup	45.96	149.99	45.86667	150.0833	2.5	13								
54	Kuril'sk	45.23	147.88	45.23333	147.8625	3.5	14								
30	Burevestnik	44.92	147.61	44.93333	147.625	1	15	4 po							
31	Malokuril'skoe	43.87	146.82	43.87917	146.8125	5	16								
32	Yuzhno- Kuril'sk	44.04	145.85	44.02083	145.85	2.5	17								
44	Odoptu	53.37	143.17	53.375	143.1792	2.75	18								
45	Komrvo	51.12	143.57	51.11667	143.5667	1	19								
46	Pogranichnoe	50.37	143.76	50.375	143.7708	4	20								
47	M.Terpeniya	48.65	144.73	48.65417	144.7292	27.75	21	- 21							
48	Poronaisk	49.22	143.09	49.21667	143.0958	5.25	22								
49	Makarov	48.63	142.77	48.62083	142.7917	1.5	23								
50	Vzmor'e	47.85	142.51	47.84167	142.5292	2.25	24								
51	Starodubskoe	47.41	142.82	47.41667	142.8167	8	25								
52	Novikovo	46.37	143.35	46.36667	143.3458	0.75	26								
53	Korsakov	46.64	142.78	46.62917	142.7583	1.75	27								
33	M.Kril'on	45.9	142.08	45.89583	142.075	1.25	28								

Рис. 8. Рельеф дна 4-й расчетной подобласти

Таблица 7. Расчетная область № 5.

Global	Name	Ν	Е	N	E	Depth	Local	Распределение глубин под						
Index				15 sec	15 sec	15 sec	Index	защищаемыми пунктами						
14	Nikol'skoe	55.2	166.02	55.20833	165.9917	2	1	на то секундной сетке Depth. m.						
1	Apuka	60.46	169.58	60.44583	169.575	4.75	2	4						
2	Pahachi	60.56	169.14	60.55833	169.1375	0.25	3							
3	Tilichiki	60.43	163.18	60.4125	166.05	3	4							
4	Korf	60.37	166.01	60.37083	166.0083	2	5							
5	Vyvenka	60.19	165.45	60.18333	165.4583	2.5	6	4						
6	ll'pyrskoe	59.96	164.18	59.95417	164.1833	9	7	თ						
7	Tymlat	59.5	163.18	59.49583	163.2042	1	8							
8	Ossora	59.25	163.07	59.24583	163.0708	1.25	9	~~~						
9	Kostroma	59.04	163.18	59.0375	163.1833	33.5	10							
10	Karaga	59.11	163.12	59.12083	163.1292	0.75	11	ω						
11	Ivashka	58.57	162.3	58.55833	162.3167	3	12							
18	Ozernaya	57.65	163.23	57.65	163.225	16.5	13							
19	Afrika	56.18	163.3	56.16667	163.3125	13	14							
12	Ust'- Kamchatsk	56.24	162.5	56.22917	162.5	10.5	15	- 13 to						
20	Kronoki	54.58	161.21	54.57917	161.1958	22.75	16							
21	Semyachiki	54.2	159.98	54.14583	160.0333	28.25	17							
22	Petropavlovskii mayak	52.88	158.72	52.88333	158.7042	2.5	18							
13	Petropavlovsk- Kamchatskii	53.05	158.63	53.0375	158.6167	5.25	19							
23	Vodopadnaya	51.82	158.1	51.81667	158.1083	18	20	- 20						
24	Lopatka	50.87	156.67	50.86667	156.6583	2	21							
26	Shumshu	50.74	156.31	50.65	156.4167	4.5	22							
27	Severo- Kuril'sk	50.68	156.12	50.66667	156.1333	1.5	23							
28	Simushir	46.82	151.78	46.77917	151.8375	2.875	24							

Рис. 9. Рельеф дна 5-й расчетной подобласти

Таблица 8. Расчетная область № 6.

Global Index	Name	N	E	N 15 sec	E 15 sec	Depth 15 sec	Local Index		Распределение глубин под защищаемыми пунктами на 15 секундной сетке				
14	Nikol'skoe	55.2	166.02	55.20833	165.9917	2	1		C	epth, m.			
1	Apuka	60.46	169.58	60.44583	169.575	4.75	2	-40	-30	-20	-10	0	
2	Pahachi	60.56	169.14	60.55833	169.1375	0.25	3						
3	Tilichiki	60.43	163.18	60.4125	166.05	3	4						
4	Korf	60.37	166.01	60.37083	166.0083	2	5						
5	Vyvenka	60.19	165.45	60.18333	165.4583	2.5	6					w	
6	ll'pyrskoe	59.96	164.18	59.95417	164.1833	9	7					4 -	
7	Tymlat	59.5	163.18	59.49583	163.2042	1	8					σ	
8	Ossora	59.25	163.07	59.24583	163.0708	1.25	9					- - 0	
9	Kostroma	59.04	163.18	59.0375	163.1833	33.5	10					- ~	
10	Karaga	59.11	163.12	59.12083	163.1292	0.75	11					— <mark></mark> — ∞	
11	Ivashka	58.57	162.3	58.55833	162.3167	3	12					p	
18	Ozernaya	57.65	163.23	57.65	163.225	16.5	13					- 10	
19	Afrika	56.18	163.3	56.16667	163.3125	13	14						
12	Ust'- Kamchatsk	56.24	162.5	56.22917	162.5	10.5	15					1 point	
20	Kronoki	54.58	161.21	54.57917	161.1958	22.75	16					3 ș,	
21	Semyachiki	54.2	159.98	54.14583	160.0333	28.25	17					4 lo 1	
22	Petropavlovskii mayak	52.88	158.72	52.88333	158.7042	2.5	18					- 5 - 16	
13	Petropavlovsk- Kamchatskii	53.05	158.63	53.0375	158.6167	5.25	19					17 18	
23	Vodopadnaya	51.82	158.1	51.81667	158.1083	18	20						
24	Lopatka	50.87	156.67	50.86667	156.6583	2	21					0 _ 2	
26	Shumshu	50.74	156.31	50.65	156.4167	4.5	22						
27	Severo- Kuril'sk	50.68	156.12	50.66667	156.1333	1.5	23					- 22	
										II			

Рис. 10. Рельеф дна 6-й расчетной подобласти

Изображенные на следующем рисунке (Рис. 11) рельефы дна акваторий, прилегающих к острову Итуруп, демонстрируют серьезные расхождения в данных, размещенных в различных общедоступных массивах. Так, например наличие протяженного мелководного плато, размещенного напротив северо-восточной части острова, принципиально искажает результаты моделирования поведения волны цунами вблизи побережья, приводя к отражению от мелководья значительной части волновой энергии и к образованию системы захваченных мелководьем волн. Этот пример еще раз подтверждает необходимость постановки и решения задачи по созданию качественного массива батиметрической информации с разрешением не менее 15 секунд, так, как это было сделано специалистами из Германии при выполнении работ по созданию Индонезийской национальной системы предупреждения о цунами. Этот массив должен быть доступен всем исполнителям проектов ФЦП "Снижение рисков и смягчение последствий чрезвычайных ситуаций природного и техногенного характера в Российской Федерации".

Рис. 11. Сравнение рельефов дна акватории, прилегающей к острову Итуруп по данным, содержащимся в различных массивах батиметрических данных.

4. Модельные цунамигенные землетрясения и соответствующие начальные возмущения

Как уже было отмечено выше, в качестве цунамигенных очагов при выполнении работ отчетного этапа использовался набор, созданный при выполнении контрактных работ 2007 года, модифицированный в части уточнения азимутов направленности. Этот набор включал 107 модельных сейсмических источников, из которых 72 источника магнитуды 7.8, 14 – 8.1, 16 – 8.4 и 5 – 9.0. В качестве защищаемых пунктов – набор, заданный заказчиком для выполнения работ по контракту в 2009 г. и включающий пункты на восточном побережье Камчатки, на Курильских островах. Списки источников цунамигенных землетрясений и их параметров для каждой из расчетных подобластей приведены в следующих таблицах (Таблица 9 – Таблица 14).

Таблица 9. Параметры источников, включенных в подобласть I.

ID	y	X	L	W	DE	LA	TE	D0	H top
78-1a	46.75	153.35	108	38	15	90	50	3.42	5
78-1b	46.93	152.85	108	38	15	90	50	2.74	15
78-1c	47.1	152.35	108	38	15	90	50	2.74	25
78-1d	47.3	152	108	38	15	90	50	2.74	35
78-2a	47.55	154.38	108	38	15	90	45	3.42	5
78-2b	47.7	153.95	108	38	15	90	45	2.74	15
78-2c	47.9	153.55	108	38	15	90	45	2.74	25
78-2d	48.1	153.1	108	38	15	90	45	2.74	35
78-3a	48.35	155.45	108	38	15	90	45	3.42	5
78-3b	48.55	155.05	108	38	15	90	45	2.74	15
78-3c	48.73	154.63	108	38	15	90	45	2.74	25
78-3d	48.9	154.2	108	38	15	90	45	2.74	35
78-4a	49.15	156.58	108	38	15	90	45	3.42	5
78-4b	49.35	156.18	108	38	15	90	45	2.74	15
78-4c	49.55	155.75	108	38	15	90	45	2.74	25
78-4d	49.7	155.3	108	38	15	90	45	2.74	35
81-1e	47.13	155.45	150	52	135	90	45	5.1	5
81-1f	47.38	154.8	150	52	45	90	45	5.1	5
81-2e	48.25	157	150	52	135	90	45	5.1	5
81-2f	48.5	156.43	150	52	45	90	45	5.1	5
81-3e	49.4	158.6	150	52	135	90	45	5.1	5
81-3f	49.65	158	150	52	45	90	45	5.1	5
84-1b	47.33	153.45	215	75	15	90	45	6.1	5
84-1d	47.68	152.55	215	75	15	90	45	5.5	25
84-2b	48.95	155.58	215	75	15	9 0	45	6.1	5
84-2d	49.3	154.75	215	75	15	90	45	5.5	25
84-3b	50.5	157.75	215	75	15	90	45	6.1	5
84-3d	50.85	156.95	215	75	15	9 <mark>0</mark>	45	5.5	25

Таблица 10. Параметры источников, включенных в подобласть II.

ID	v	x	L	W	DE	LA	TE	D0	H top
78-4a	49.15	156.58	108	38	15	90	45	3.42	5
78-4b	49.35	156.18	108	38	15	90	45	2.74	15
78-4c	49.55	155.75	108	38	15	90	45	2.74	25
78-4d	49.7	155.3	108	38	15	90	45	2.74	35
78-5a	49.93	157.7	108	38	15	90	45	3.42	5
78-5b	50.1	157.28	108	38	15	90	45	2.74	15
78-5c	50.3	156.85	108	38	15	90	45	2.74	25
78-5d	50.45	156.4	108	38	15	90	45	2.74	35
78-6a	50.75	158.7	108	38	15	90	45	3.42	5
78-6b	50.9	158.25	108	38	15	90	45	2.74	15
78-6c	51.1	157.9	108	38	15	90	45	2.74	25
78-6d	51.3	157.55	108	38	15	90	45	2.74	35
78-7a	51.55	159.7	108	38	15	90	45	3.42	5
78-7b	51.7	159.25	108	38	15	90	45	2.74	15
78-7c	51.9	158.9	108	38	15	90	45	2.74	25
78-7d	52.1	158.5	108	38	15	90	45	2.74	35
78-8a	52.4	160.85	108	38	15	90	45	3.42	5
78-8b	52.55	160.4	108	38	15	90	45	2.74	15
78-8c	52.75	160	108	38	15	90	45	2.74	25
78-8d	52.95	159.55	108	38	15	90	45	2.74	35
78-9a	53.25	161.7	108	38	15	90	40	3.42	5
78-9b	53.4	161.25	108	38	15	90	40	2.74	15
78-9c	53.55	160.8	108	38	15	90	40	2.74	25
78-9d	53.75	160.4	108	38	15	90	40	2.74	35
78-10a	54.05	162.45	108	38	15	90	40	3.42	5
78-10b	54.25	162	108	38	15	90	40	2.74	15
78-10c	54.4	161.55	108	38	15	90	40	2.74	25
78-10d	54.6	161.2	108	38	15	90	40	2.74	35
81-3e	49.4	158.6	150	52	135	90	45	5.1	5
81-3f	49.65	158	150	52	45	90	45	5.1	5
81-4e	50.6	160.25	150	52	135	90	45	5.1	5
81-4f	50.85	159.6	150	52	45	90	45	5.1	5
81-5e	51.75	161.65	150	52	135	90	40	5.1	5
81-5f	52.05	161.03	150	52	45	90	40	5.1	5
81-6e	53.05	162.95	150	52	135	90	40	5.1	5
81-6f	53.25	162.25	150	52	45	90	40	5.1	5
81-7e	54.3	164.18	150	52	135	90	35	5.1	5
81-7f	54.5	163.45	150	52	45	90	35	5.1	5
84-2b	48.95	155.58	215	75	15	90	45	6.1	5
84-2d	49.3	154.75	215	75	15	90	45	5.5	25
84-3b	50.5	157.75	215	75	15	90	45	6.1	5
84-3d	50.85	156.95	215	75	15	90	45	5.5	25
84-4b	52.13	159.83	215	75	15	90	45	6.1	5
84-4d	52.5	158.98	215	75	15	90	45	5.5	25
84-5b	53.78	161.63	215	75	15	90	40	6.1	5
84-5d	54.1	160.65	215	75	15	90	40	5.5	25
84-6b	55.45	163.3	215	75	15	90	35	6.1	5
84-6d	55.7	162.3	215	75	15	90	35	5.5	25

Таблица 11. Параметры источников, включенных в подобласть III.

ID	v	x	L	W	DE	LA	TE	D0	H top
78-10a	54.05	162.45	108	38	15	90	40	3.42	5
78-10b	54.25	162	108	38	15	90	40	2.74	15
78-10c	54.4	161.55	108	38	15	90	40	2.74	25
78-10d	54.6	161.2	108	38	15	90	40	2.74	35
78-11a	54.88	163.3	108	38	15	90	35	3.42	5
78-11b	55	162.85	108	38	15	90	35	2.74	15
78-11c	55.25	162.35	108	38	15	90	35	2.74	25
78-11d	55.4	162	108	38	15	90	35	2.74	35
78-12a	55.75	164.15	108	38	15	90	35	3.42	5
78-12b	55.9	163.7	108	38	15	90	35	2.74	15
78-12c	56.05	163.2	108	38	15	90	35	2.74	25
78-12d	56.2	162.75	108	38	15	90	35	2.74	35
78-13d	55.3	164.75	108	38	10	170	125	3.42	5
78-14d	54.75	166.23	108	38	10	170	125	3.42	5
78-15d	54.1	167.63	108	38	10	170	125	3.42	5
78-16d	53.5	169.05	108	38	10	170	125	3.42	5
78-21c	57.25	163.75	108	38	35	90	-5	3.42	5
78-21d	57.25	163.23	108	38	125	90	-5	3.42	5
78-22c	58.13	163.65	108	38	35	90	-10	3.42	5
78-22d	58.15	163.18	108	38	125	90	-10	3.42	5
78-23c	59.05	163.9	108	38	35	90	30	3.42	5
78-23d	59.25	163.5	108	38	125	90	30	3.42	5
78-24c	59.55	164.45	108	38	35	90	30	3.42	5
78-24d	59.8	164.05	108	38	125	90	30	3.42	5
78-25c	57.95	164.1	108	38	35	90	30	3.42	5
78-25d	58.2	163.75	108	38	125	90	30	3.42	5
78-26c	58.7	165.15	108	38	35	90	40	3.42	5
78-26d	58.95	164.8	108	38	125	90	40	3.42	5
78-27c	59.33	166.4	108	38	35	90	50	3.42	5
78-27d	59.55	166.1	108	38	125	90	50	3.42	5
78-28c	59.75	167.75	108	38	35	90	60	3.42	5
78-28d	60.08	167.65	108	38	125	90	60	3.42	5
81-5e	51.75	161.65	150	52	135	90	40	5.1	5
81-51	52.05	161.03	150	52	45	90	40	5.1	5
81-6e	53.05	162.95	150	52	135	90	40	5.1	5
81-6f	53.25	162.25	150	52	45	90	40	5.1	5
81-/e 91.76	54.5	104.18	150	52	135	90	35	5.1	5
81-/I 84.4h	54.5	103.45	150	52	45	90	35	5.1	5
84-4D	52.13	159.83	215	75	15	90	45	0.1 5.5	5
04-40 84 5h	52.5	150.98	215	15	15	90	45	5.5 6 1	23 5
04-5D 94-5J	53./ð 54 1	101.03	215	15	15	90	40	0.1	5 25
04-30 84 Ch	54.1 55 AF	162.2	215	15	15	90	40	5.5	23 5
04-00 84 64	55.45 55 7	162.2	215	75	15	90	35	5.5	5 25
04-00 84 74	55./ 55.55	102.3	215	75 75	15	90 170	35 125	5.5	23 5
04-7U 87 83	55.55 51 A	160 5	215	75	10	170	125	6.1	5
04-0U	34.4	102.2	413	15	10	1/0	143	0.1	3

Таблица 12. Параметры источников, включенных в подобласть IV.

ID	у	X	L	W	DE	LA	TE	D0	H_top
90-1d	48.5	153.65	430	150	15	90	45	11.6	5
90-2d	51.65	157.9	430	150	15	90	40	11.6	5
90-3d	54.9	161.5	430	150	15	90	35	11.6	5

Таблица 13. Параметры источников, включенных в подобласть V.

ID	у	X	L	W	DE	LA	TE	D0	H_top
90-1d	48.5	153.65	430	150	15	90	45	11.6	5
90-2d	51.65	157.9	430	150	15	90	40	11.6	5
90-3d	54.9	161.5	430	150	15	90	35	11.6	5

Таблица 14. Параметры источников, включенных в подобласть VI.

ID	у	Х	L	W	DE	LA	TE	D0	H_top
78-17d	52.95	170.5	108	38	10	170	115	3.42	5
78-18d	52.5	171.95	108	38	10	170	115	3.42	5
78-19d	52.05	173.55	108	38	10	170	105	3.42	5
78-20d	51.6	175.6	108	38	10	170	105	3.42	5
84-9d	53.43	172.25	215	75	10	170	115	6.1	5
84-10d	52.45	175.4	215	75	10	170	105	6.1	5
90-4d	55	167.95	430	150	10	170	125	11.6	5
90-5d	52.9	173.83	430	150	10	170	110	11.6	5

Схематическое изображение размещения очагов цунамигенных землетрясений различной магнитуды вместе с их условными обозначениями (ID) приведено на следующих рисунках (Рис. 12 – Рис. 15).

Рис. 12. Схематическое изображение размещения очагов цунамигенных землетрясений магнитуды 7.8

Рис. 13. Схематическое изображение размещения очагов цунамигенных землетрясений магнитуды 8.1

Следующая серия рисунков (Рис. 16 – Рис. 21) иллюстрирует расположение защищае-

мых пунктов и очагов цунамигенных землетрясений в малых расчетных подобластях.

Рис. 16. . Схематическое изображение размещения очагов цунамигенных землетрясений в первой расчетной подобласти магнитуды 7.8 (черный цвет), 8.1 (сиреневый цвет), 8.4 (зеленый цвет), синим цветом отмечено размещение защищаемых пунктов.

Рис. 17. Схематическое изображение размещения очагов цунамигенных землетрясений во второй расчетной подобласти магнитуды 7.8 (черный цвет), 8.1 (сиреневый цвет), 8.4 (зеленый цвет), синим цветом отмечено размещение защищаемых пунктов.

Рис. 18. Схематическое изображение размещения очагов цунамигенных землетрясений в третьей расчетной подобласти магнитуды 7.8 (черный цвет), 8.1 (сиреневый цвет), 8.4 (зеленый цвет), синим цветом отмечено размещение защищаемых пунктов.

Рис. 19. Схематическое изображение размещения очагов цунамигенных землетрясений в четвертой расчетной подобласти магнитуды 9.0 (оранжевый цвет), синим цветом отмечено размещение защищаемых пунктов.

Рис. 20. Схематическое изображение размещения очагов цунамигенных землетрясении в пятой расчетной подобласти магнитуды 9.0 (оранжевый цвет), синим цветом отмечено размещение защищаемых пунктов.

Рис. 21. Схематическое изображение размещения очагов цунамигенных землетрясений во второй расчетной подобласти магнитуды 8.4 (зеленый цвет), 9.0 (оранжевый цвет), синим цветом отмечено размещение защищаемых пунктов.

5. Результаты расчетов: картины распространения энергии волн цунами.

Предусмотренные планом работ вычислительные эксперименты выполнялись на высокопроизводительном вычислительном кластере Новосибирского государственного университета и потребовали около 5 суток машинного времени в многопроцессорном режиме. Соответствующее время, потребовавшееся для расчета на одном процессоре, составило бы более 150 суток.

На следующей серии рисунков (Рис. 22 – Рис. 58) изображены характерные картины распространения энергии волн цунами от модельных цунамигенных землетрясений, расположенных в малых подобластях, расчеты в которых производились с использованием детальных батиметрических данных, определенных на 15 секундной равномерной сетке.

Картины распространения энергии волн цунами от модельных цунамигенных землетрясений, расположенных в 1-й расчетной подобласти.

Рис. 22. Распространения энергии волны цунами от модельного цунамигенного землетрясения 84-1b с магнитудой 8.4, расположенного в 1-й расчетной подобласти.

Рис. 23. Распространения энергии волны цунами от модельного цунамигенного землетрясения 84-1d с магнитудой 8.4, расположенного в 1-й расчетной подобласти.

Рис. 24. Распространения энергии волны цунами от модельного цунамигенного землетрясения 84-2b с магнитудой 8.4, расположенного в 1-й расчетной подобласти.

Рис. 25. Распространения энергии волны цунами от модельного цунамигенного землетрясения 84-2d с магнитудой 8.4, расположенного в 1-й расчетной подобласти.

Рис. 26. Распространения энергии волны цунами от модельного цунамигенного землетрясения 84-3b с магнитудой 8.4, расположенного в 1-й расчетной подобласти.

Рис. 27. Распространения энергии волны цунами от модельного цунамигенного землетрясения 84-3d с магнитудой 8.4, расположенного в 1-й расчетной подобласти.

Картины распространения энергии волн цунами от модельных цунамигенных землетрясений, расположенных в 2-й расчетной подобласти.

Рис. 28. Распространения энергии волны цунами от модельного цунамигенного землетрясения 78-6b с магнитудой 7.8, расположенного во 2-й расчетной подобласти.

Рис. 29. Распространения энергии волны цунами от модельного цунамигенного землетрясения 84-2b с магнитудой 8.4, расположенного во 2-й расчетной подобласти.

Рис. 30. Распространения энергии волны цунами от модельного цунамигенного землетрясения 84-2d с магнитудой 8.4, расположенного во 2-й расчетной подобласти.

Рис. 31. Распространения энергии волны цунами от модельного цунамигенного землетрясения 84-3b с магнитудой 8.4, расположенного во 2-й расчетной подобласти.

Рис. 32. Распространения энергии волны цунами от модельного цунамигенного землетрясения 84-3d с магнитудой 8.4, расположенного во 2-й расчетной подобласти.

Рис. 33. Распространения энергии волны цунами от модельного цунамигенного землетрясения 84-4b с магнитудой 8.4, расположенного во 2-й расчетной подобласти.

Рис. 34. Распространения энергии волны цунами от модельного цунамигенного землетрясения 84-4d с магнитудой 8.4, расположенного во 2-й расчетной подобласти.

Рис. 35. Распространения энергии волны цунами от модельного цунамигенного землетрясения 84-5b с магнитудой 8.4, расположенного во 2-й расчетной подобласти.

Рис. 36. Распространения энергии волны цунами от модельного цунамигенного землетрясения 84-5d с магнитудой 8.4, расположенного во 2-й расчетной подобласти.

Рис. 37. Распространения энергии волны цунами от модельного цунамигенного землетрясения 84-6b с магнитудой 8.4, расположенного во 2-й расчетной подобласти.

Картины распространения энергии волн цунами от модельных цунамигенных землетрясений, расположенных в 3-й расчетной подобласти.

с магнитудой 7.8, расположенного в 3-й расчетной подобласти.

Рис. 41. Распространения энергии волны цунами от модельного цунамигенного землетрясения 84-4b с магнитудой 8.4, расположенного в 3-й расчетной подобласти.

Рис. 43. Распространения энергии волны цунами от модельного цунамигенного землетря сения 84-5b с магнитудой 8.4, расположенного в 3-й расчетной подобласти.

Рис. 44. Распространения энергии волны цунами от модельного цунамигенного землетрясения 84-5d с магнитудой 8.4, расположенного в 3-й расчетной подобласти.

Рис. 45. Распространения энергии волны цунами от модельного цунамигенного землетрясения 84-6b с магнитудой 8.4, расположенного в 3-й расчетной подобласти.

Рис. 47. Распространения энергии волны цунами от модельного цунамигенного землетрясения 84-7d с магнитудой 8.4, расположенного в 3-й расчетной подобласти.

Рис. 48. Распространения энергии волны цунами от модельного цунамигенного землетрясения 84-8d с магнитудой 8.4, расположенного в 3-й расчетной подобласти.

Картины распространения энергии волн цунами от модельных цунамигенных землетрясений, расположенных в 4-й расчетной подобласти.

Рис. 49. Распространения энергии волны цунами от модельного цунамигенного землетрясения 90-1d с магнитудой 8.4, расположенного в 4-й расчетной подобласти.

Рис. 50. Распространения энергии волны цунами от модельного цунамигенного землетрясения 90-2d с магнитудой 8.4, расположенного в 4-й расчетной подобласти.

с магнитудой 8.4, расположенного в 4-й расчетной подобласти.

Картины распространения энергии волн цунами от модельных цунамигенных землетрясений, расположенных в 5-й расчетной подобласти.

с магнитудой 8.4, расположенного в 5-й расчетной подобласти.

Картины распространения энергии волн цунами от модельных цунамигенных землетрясений, расположенных в 6-й расчетной подобласти.

с магнитудой 8.4, расположенного в 6-й расчетной подобласти.

Рис. 56. Распространения энергии волны цунами от модельного цунамигенного землетрясения 84-10d с магнитудой 8.4, расположенного в 6-й расчетной подобласти.

с магнитудой 9.0, расположенного в 6-й расчетной подобласти.

6. Сравнение результатов, рассчитанных на сетках с различной детальностью.

В этом разделе отчета приведены графики, демонстрирующие различие результатов, полученных на сетках с различным разрешением. Так, на рисунках (Рис. 59 – Рис. 60) приведены максимальные амплитуды волн (в метрах), рассчитанные для защищаемых пунктов, цифровые индексы которых, отложенные на горизонтальной оси, указаны в соответствующих таблицах.

Наибольшее усиление амплитуды примерно в 4 раза отмечено в пунктах «Никольское» и «Озерное».

Рис. 59. Максимальные амплитуды, рассчитанные в защищаемых пунктах 6-й подобласти с использованием пятнадцатисекундной батиметрии для источника 84-10d с магнитудой 8.4 (красный цвет). Для сравнения синим цветом изображены результаты расчета в глобальной области с использованием одноминутной батиметрии.

Рис. 60. Рис. 53. Максимальные амплитуды, рассчитанные в защищаемых пунктах 6-й подобласти с использованием пятнадцатисекундной батиметрии для источника 90-4d с магнитудой 9.0 (красный цвет). Для сравнения синим цветом изображены результаты расчета в глобальной области с использованием одноминутной батиметрии.

7. Заключение

Результаты расчетов передаются Заказчику в виде Баз данных, структура и содержание которых подробно изложены в отчетах по контрактам 2007 – 2009 гг. Для каждой расчетной подобласти сформирована отдельная база данных. Численные представления картин свечения – максимальные и минимальные распределения высот волн за все время расчета – находятся в соответствующих разделах баз данных.