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Simulation of surface waves generated
by an underwater landslide moving over an uneven slope

S. A. BEIZEL∗, L. B. CHUBAROV∗, and G. S. KHAKIMZYANOV∗

Abstract — This paper is focused on the study of the effect of an underwater slope unevenness
on the wave mode characteristics caused by the motion of a landslide over this slope. Using the
simplest model representation of a landslide in the form of a rigid body, the authors consider two
model reliefs, taking to some extent into account the peculiarities of the Mediterranean coast of Israel.
The simulation of wave processes is performed within the framework of the equations of the shallow
water theory. The results of the comparison of wave modes are discussed, the dependences of the
characteristics of these modes on geometric and physical parameters of the studied phenomena, such
as the landslide bedding depth, its length and thickness, the geometry of the slope, and the friction
force are analyzed.

The interest in studying the landslide mechanism of surface waves generation in
coastal water areas is stregthened by a series of catastrophic events that lately took
place in different parts of the World Ocean, because the origin of such events is
generally connected with such mechanism. The landslide mechanism of tsunami
wave generation is called anomalous, in contrast to the traditional seismic one.
The anomaly means the discrepancy between an appreciable tsunami wave near the
shore and a weak earthquake associated with its generation, which in fact may be
only a trigger initiating the landslide mechanism of wave generation. Such anoma-
lous events make up approximately 15% of the registered historical tsunami.

In mathematical modelling, the model of landslide motion, as well as the model
of surrounding liquid should be developed. There are known approaches to mod-
elling landslides by the motion of a rigid body [8, 10, 17, 22, 25] or a set of such
bodies [20]. Other approaches use the simulation of the landslide mass motion by a
flow of liquids differing in their density, viscosity, etc. [12, 14, 20], or by the motion
of some elasto-plastic medium with or without taking into account the interaction
with the surrounding liquid [7]. In some papers the phenomenon is modeled as the
flow of a two-layer liquid with layers having different densities and viscosity coef-
ficients [11, 13, 15].

It was shown in [7, 10, 18, 25] that the simulation of a real landslide by a model
rigid body and the choice of an appropriate motion law for it give an adequate de-
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scription of the wave process for a wide range of such parameters as the inclination
of the flat slope, the thickness and length of the landslide, its initial depth.

The peculiarity of simulation of surface waves generated by a landslide is the
fact that these waves originate from a shallow coastal zone, the duration of the land-
slide is rather large and comparable with the period of the generated wave, and the
typical depth and the vertical size of the landslide are also comparable. Therefore,
the hydrodynamic aspects of wave processes are studied within the approximate
models of wave hydrodynamics. The investigations carried out by the authors ear-
lier allowed us to estimate the efficiency of this class of models by comparing results
obtained with the use of those models and materials of laboratory experiments [3].
The comparison was done for the simplest case when the bottom relief was a uni-
form slope passing into a flat bottom segment. The conclusion made by the authors
of the papers mentioned here [2, 3, 6, 19] was that in some particular range of the
parameters of the problem, a sufficiently adequate description of the wave modes
can be obtained using the simplest shallow water models, whereas a more detailed
study requires the involvement of nonlinear-dispersive shallow water models tak-
ing into account the non-hydrostatic pressure and, which is the same, taking into
account the contribution of the vertical flows of the liquid.

Note that in all papers mentioned above only the motion of a rigid landslide
over a flat slope was considered. In this paper we attempt to simulate surface waves
generation by a landslide moving over an uneven slope. We propose a new equation
for the motion of a pseudo-rigid landslide and in its derivation take into account
the unevenness of the slope, the forces of gravity, buoyancy, friction, and drag. A
pseudo-rigid landslide means a body whose surface form changes in accordance
with the slope relief where this landslide moves. In this case the horizontal velocity
components of all points of the landslide are equal. For a flat slope the obtained
equation coincides with the equations presented in [17, 21]. Note that in the numer-
ical simulation of the landslide over a linear slope without friction the authors of
[9] joined the slope with an even bottom segment at some depth and, in order to
prevent the landslide entering this segment, artificially changed the motion velocity
at the end of the slope so that the landslide stopped at a specified position. This ar-
tificial sharp braking generated a velocity bend (jump of acceleration) which, in its
turn, promoted the appearance of ‘braking waves’ having a considerable amplitude.
The consideration of friction leads to a more smooth braking of the landslide and
removes such peculiarities from the wave mode.

The simulation of surface waves generated in the motion of a landslide over an
uneven bottom was performed within the nonlinear shallow water model subject to
the mobility of the bottom. A modified finite difference MacCormack scheme on a
fixed uniform grid was used for the calculation [5].

The basic constant characteristics of the wave processes and the parameters de-
pending on the singularities of the form of the underwater slope were determined
from the results of numerical experiments. The results of comparison of wave modes
over different bottom reliefs are discussed, the dependences of the characteristics of
these modes on the geometric and physical parameters of the studied phenomena,
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i.e., on the bedding depth of the landslide, its length and thickness, and also the
slope geometry and the magnitude of the force of friction are analyzed. It is shown
that the pattern of the generated surface waves obtained for the landslide motion
over an uneven bottom essentially differs from the case of a flat slope.

1. General statement of the problem

Consider a flat liquid layer bounded by a free surface from above and by a watertight
movable bottom from below. It is assumed that the liquid experiences the force of
gravity, is incompressible and non-viscous. Let the Cartesian coordinate system Oxz
be taken, so that the equation of the free liquid surface at rest has the form z = 0 and
all characteristics of the liquid depend only on the variables x, t. In order to model
the hydrodynamic parameters of the studied phenomena, we use the nonlinear shal-
low water model whose equations have the following form in the chosen coordinate
system:

∂u
∂ t

+
∂ f
∂x

= G (1.1)

where t is the time, u is the solution vector, f is the flux vector,

u =
(

H
Hu

)
, f(u) =

(
Hu

Hu2 +gH2/2

)
, G =

(
0

gHhx

)

u(x, t) is the velocity, H = η +h is the total depth, η(x, t) is the deviation of the free
surface from the unperturbed level z = 0, the equation

z = −h(x, t) = hbt(x)+hsl(x, t)

determines the form of the movable bottom, hbt(x) and hsl(x, t) are the functions
determining its fixed and movable parts, respectively, g is the acceleration of gravity.

We assume that a vertical impermeable wall is positioned on the left (x = 0)
‘coastal’ boundary of the water area and the right ‘deep-water’ boundary is open.
The conditions of nonpercolation and free passage are posed on these boundaries,
respectively.

It is supposed that at the initial time moment the liquid is in the state of rest and
the function z = h0

sl(x) describing the initial form of the landslide is known:

hsl(x,0) = h0
sl(x). (1.2)

The form and the position of the landslide for t > 0 is determined by the law of its
motion, this law will be derived in the next section.

The results [2, 3] of the simulation of surface waves generated by a landslide
moving over a flat slope give us the ground to assert that the mathematical model
presented here provides a sufficiently adequate conception of the studied wave pro-
cess. In this paper this model is used for the study of surface waves arising in the
motion of a landslide over an uneven slope determined by a single-valued function

z = hbt(x). (1.3)
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The numerical experiments were performed on a uniform calculation grid with
the use of a simple and efficient finite difference scheme constructed on the base
of the MacCormack scheme of the second order of approximation. The time step
was chosen from the stability condition for the finite difference scheme so that the
Courant number was equal to 0.9.

2. Law of motion of an underwater landslide

One of the principal factors determining the peculiarities of the wave-formation
process caused by the motion of an immersed (underwater) landslide is the motion
law associated with this body. In simulating a landslide by a rigid body, such law
is specified for a typical point of the body, for example, for its center of mass. The
motion laws for landslides proposed in [8, 17, 22, 25] were used by the authors of
this paper in their previous investigations when the phenomenon was simulated for
the simplest water areas shaped as a ‘linear slope’. In this paper we take into account
the unevenness of the underwater slope in the derivation of the landslide motion law.

It is supposed that at the initial time moment the landslide has a finite length b
and a thickness T and its surface is described by the function

z = hbt(x)+h0
sl(x) (2.1)

where z = h0
sl(x) is a given nonnegative function with a finite support

(
x0

l , x0
r

)
of the

length b (along the axis Ox) and with the maximal value T > 0 at some point of the
segment

(
x0

l , x0
r

)
.

For t > 0 the landslide can begin its motion over the sloping bottom. Let us
describe the simplified method of modelling the landslide process used in this paper
and based on the following assumptions:

(1) in the derivation of the landslide motion law, at each time moment this land-
slide is identified with some material point xc(t) having the abscissa xc(t) and slid-
ing along uneven bottom (1.3) according to the law of motion of a material point
along a flat curve, in this case xc(0) = x0

c , where x0
c ∈

(
x0

l , x0
r

)
;

(2) the position of the landslide is exclusively determined by the value of the
abscissa xc(t) of the selected point xc(t), and its surface is described for t > 0 by the
function

z = hbt(x)+hsl(x, t) (2.2)

where hsl(x, t) = h0
sl(x+ x0

c − xc(t)).
Thus, at the time moment t the landslide is positioned on the slope between the

points with the abscissas

xl(t) = x0
l − x0

c + xc(t), xr(t) = x0
r − x0

c + xc(t) = xl(t)+b (2.3)

and in the course of motion its length (along the horizontal axis Ox) remains invari-
able. Note also that in the motion of the landslide its surface is deformed according
to the raggedness of the bottom, however, the volume V of the landslide and its mass
M = ρslV remain invariable. Here ρsl is the density of the material of the landslide.
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Describe the landslide motion law, or more exactly, indicate the method of cal-
culation of the function x = xc(t), because just this function participates in the defi-
nition of surface (2.2) of the moving landslide.

Let s be the arc length of curve (1.3) measured from its beginning. By assump-
tion, (1.3) is a single-value function of the variable x and hence there is one-to-one
correspondence between the variables x and s, which is given by the equality

s(x) =
x∫

0

√
1+

[
h′bt(ξ )

]2
dξ . (2.4)

Suppose the selected point xc(0) corresponds to the parameter s = S0 and the mov-
ing point xc(t) with the abscissa xc(t) corresponds to the parameter s = S(t). Then
the law of motion s = S(t) of the initially resting material point xc(t) along curve
(1.3) has the following form:

mS̈(t) = Fτ(t), S(0) = S0, Ṡ(0) = 0 (2.5)

where S̈ = d2S/dt2, Ṡ = dS/dt , m is a value having the dimensionality of mass,
Fτ(t) is the tangent component of the force acting onto the moving point xc(t) at the
time moment t.

For the value of m we take the sum of the mass M of the landslide and the
associated water mass CwρwV , i.e.,

m = M +CwρwV = (ρsl +Cwρw)V (2.6)

where ρw is the water density taken equal to one in the calculations, Cw is the coef-
ficient of the associated mass.

Now clarify the notion of the force Fτ entering equation (2.5) and acting on
the material point xc(t). The force of gravity and the buoyancy force act on each
element of the length dx of the landslide in the vertical direction. At an arbitrary
point x ∈ (xl(t), xr(t)), the component of these two opposite forces which is tangent
to curve (1.3) can be calculated by the formula

(ρsl −ρw)hsl(x, t)W gsin θ(x) dx (2.7)

where W is the landslide width perpendicular to the plane xOz, θ(x) is the local
slope angle of the bottom, in this case

θ(x) = −arctan h′bt(x), sinθ(x) = − h′bt(x)√
1+

[
h′bt(x)

]2
.

Thus, the total effect of the gravity and buoyancy forces on the landslide of a finite
size is replaced by the force

(ρsl −ρw)Wg

xr(t)∫
xl(t)

hsl(x, t)sin θ(x) dx (2.8)
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acting in the tangent direction on the material point xc(t) moving along curve (1.3).
Force (2.8) accelerates the landslide, and deceleration is caused by the drag

and friction of the landslide against the bottom. The tangent component of the drag
opposite to the motion of the landslide is proportional to the area TW of its greatest
cross-section and is equal to

−1
2
CdρwTW (Ṡ)2 (2.9)

where Ṡ is the velocity of the point x0(t) along curve (1.3), Cd is the drag coefficient.
Note that drag (2.9) is passive, i.e., this force vanishes in the absence of motion.

Another force decelerating the motion of the landslide is the force of friction
directed along the tangent to curve (1.3) opposite to the motion of the landslide. This
force is passive too, because in the absence of motion it cannot change the position
of the landslide and its effect on the position of the landslide becomes apparent only
in its motion (for Ṡ �= 0).

First we consider an element of length dx of the landslide. We determine the
force of friction for it based on the normal reaction N(x, t) from the bottom to the
selected element:

Ff (x, t) = −Cf N(x, t) (2.10)

where Cf is the dynamic coefficient of friction (the sliding friction coefficient). In
our simplified model of the landslide process we assume that the numerical value of
the coefficient Cf coincides with the value of the sliding friction coefficient at rest
and is determined by the friction angle θ∗, i.e., the threshold value of the angle is
such that the excess of this angle initiates sliding of the landslide over the flat slope.
This angle of friction is also used for curvilinear slopes. The assumptions presented
above imply the following formula for the determination of the friction coefficient:

Cf = tanθ∗.

The normal reaction N(x, t) acting on the element dx of the landslide is deter-
mined as the sum of the normal component of the force of gravity and the centrifugal
force:

N(x, t) = (ρsl −ρw)hsl(x, t)W gcos θ(x)dx+(ρsl −ρw)hsl(x, t)W K(x)
(
Ṡ(t)

)2
dx

(2.11)
where K(x) is the bottom curvature of a fixed sign:

K(x) = h′′bt(x)
(√

1+
[

h′bt(x)
]2

)−3

.

The curvature equals zero for a flat slope, therefore, for this case expression
(2.11) does not contain the second summand. It is also seen from formulas (2.10),
(2.11) that, in comparison with a flat slope, the unevenness of the bottom causes
some decrease in the force of friction (in its absolute value) on the upward convex
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segments of the bottom (h′′bt(x) < 0) and vice versa, some increase in the downward
convex segments (h′′bt(x) > 0).

Taking into account expression (2.11), we get that the following force of friction
acts on the moving landslide (this force is applied at the point xc(t) and is tangent
to curve (1.3) at this point):

Ff (t) = −Cf (ρsl −ρw)W

xr(t)∫
xl(t)

hsl(x, t)
[
gcos θ(x)+K(x)

(
Ṡ(t)

)2
]
dx. (2.12)

The resultant force of (2.8), (2.9), (2.12) is accepted as Fτ entering formula
(2.5). Thus, taking into account the above assumptions, problem (2.5) is written in
the following form:

(ρsl +Cwρw)V S̈ = (ρsl −ρw)WgI1 −W

[
(ρsl −ρw) I2 +

1
2
CdρwT

]
(Ṡ)2 (2.13)

S(0) = S0, Ṡ(0) = 0 (2.14)

where

I1(t) =

xr(t)∫
xl(t)

hsl(x, t)
[

sinθ(x)−Cf cosθ(x)
]
dx, I2(t) = Cf

xr(t)∫
xl(t)

hsl(x, t)K(x) dx

and the required value xc(t) is related to the solution S(t) to problem (2.13), (2.14)
by relation (2.4):

S(t) =

xc(t)∫
0

√
1+

[
h′bt(ξ )

]2
dξ .

Note that equation (2.13) is valid only for a moving landslide. Since the land-
slide is at rest at the initial moment, we can use this equation for t > 0 only if the
landslide actually starts to move. The form of equation (2.13) implies that the suffi-
cient condition for the possibility of the landslide to move at the initial time moment
is the positivity of the integral I1 at t = 0:

I1 =

x0
r∫

x0
l

h0
sl(x)

[
sinθ(x)−Cf cosθ(x)

]
dx > 0.

Since equation (2.13) is nonlinear, we have to use numerical methods for its
solution. To do that, it is expedient to rewrite problem (2.13), (2.14) as a Cauchy
problem for a system of first-order ordinary differential equations:

(γ +Cw)
V
W

v̇ = (γ −1)gI1 −
[
(γ −1) I2 +

Cd

2
T

]
v2, v(0) = 0 (2.15)
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Ṡ = v, S(0) = S0 (2.16)

where γ = ρsl/ρw denotes the ratio of the density of the landslide material to the
water density, γ > 1. The solution to this problem is sought up to the stopping mo-
ment of the landslide, i.e., up to the time moment when the landslide velocity v first
turns to zero (with a given accuracy).

3. Model water areas and model landslide

3.1. Model water areas

For the first attempts to study the effect of the bottom unevenness on the surface
waves generated by the motion of an underwater landslide we have chosen two
model reliefs. The simplest model relief is a linear slope with the inclination angle
θ = 2◦ from the depth of 20 m on the left boundary to the depth of 1400 m passing
to the zone of a constant depth up to the right boundary x = 70000 m:

hbt(x) =

{ −20− x tan2◦, 0 � x � 1380 cot 2◦

−1400, 1380 cot2◦ � x � 70000.

The second (curvilinear) relief with a nonzero curvature was obtained with the
help of an analytic smooth monotone decreasing function:

hbt(x) =
h+ +h−

2
+

h+ −h−
2

tanh [c(x−ξ )]

where h+ is the bottom depth at the right infinitely distant point, h− is the depth
at the left infinitely distant point, c = 2tanθ0/(h−−h+), θ0 is the maximal slope
angle of the relief, ξ = (1/2c) ln(h0 − h+)/(h− − h0) is the point of bending, h0 is
the depth at the point x = 0. We used the following values of the parameters in the
calculations: h+ = −1400 m, h− = −15 m, θ0 = 6◦, h0 = −20 m. The length of the
domain was 70000 m. Further we call this relief ‘curvilinear’.

We used four virtual mareographs for recording the results, they were positioned
on the shore (x = 0 m, mareograph A), over the upper part of the slope (x = 10000 m,
mareograph B), near the end of the slope (x = 30000 m, mareograph C), and in the
deep-water zone (x = 60000 m, mareograph D). The total number of the calculation
grid nodes used in the numerical experiments was 1401.

3.2. Model landslide

The form of a rigid body for the model landslide used by the authors in the study
was defined by the formula similar to that proposed in [16]:

hsl(x, t) = T

[
1+ tanh (2(x− x1(t))/p)

][
1− tanh (2(x− x2(t))/p)

]
[
1+ tanh(1)

][
1− tanh(−1)

]
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where x1(t) = xc(t)− p/2, x2(t) = xc(t)+ p/2, xc(t) is the coordinate of the center
of mass of the landslide on the axis Ox.

The maximal depth T of the landslide was taken equal to 25 m, the parameter
p corresponding to the length of the landslide was 2500 m. Since in the derivation
of the motion law we assumed that the length of the landslide is finite, the support
of the landslide was determined by 10 % of the maximal thickness and so its length
b was approximately equal to 5000 m. At the initial time moment the center of
mass of the landslide was at the point corresponding to the depth of 500 m. These
values, along with the values of the constants in this law of motion (γ = 1.5, Cw = 1,
Cd = 1, θ∗ = 1◦) are used in numerical experiments by default if we do not specify
otherwise.

4. Numerical experiments

4.1. General characteristics of generated wave modes

Considering the peculiarities of the landslide mechanism of wave formation related
to the complication of the bottom relief, we have to note that the nonlinearly varying
bottom relief, first, influences the wave transformation in its spread and, second,
participates in the formation of the landslide motion law depending on the local
slope angle θ(x).

The plots of time variations of the velocities and acceleration of the centers of
mass of landslides (Fig. 2) illustrate the laws of motion of landslides moving under
the effect of the gravity, buoyancy, friction, and drag forces. Here and further the
velocity was calculated directly from the equations of the landslide motion, and the
acceleration was calculated by central finite differences and further averaging by the
five-points moving average method.

As can be seen from the plots, at the initial time moment the body begins to
move with some acceleration decreasing in time. When the body moves over the
linear slope, before the transition to the deceleration mode acceleration slowly tends
to its zero value, and over curvilinear zones the passage to the deceleration mode
takes place much faster. As was already noted above (in the derivation of the motion
law), the force of friction decreases in the zone of acceleration over an upward
convex part of the slope, which promotes acceleration, whereas the contribution of
the force of friction increases near the end of the slope over the downward convex
part and hence intensifies the braking process.

It is worth noting that if the linear slope were infinite, the motion velocity of the
landslide under the effect of the resultant external force would asymptotically tend
to some finite limit, whose value is determined by the parameters of the slope and
the landslide.

When the landslide enters the zone of small slope angles, the process of decel-
eration begins and the highest rate of this process is observed at the initial stage
of deceleration, then it is gradually decreases to the complete stop of the landslide.
This stop occurs sharply (with a jump of acceleration) under a nonzero contribution



26 S. A. Beizel, L. B. Chubarov, and G. S. Khakimzyanov

Figure 1. Plots of the bottom relief characteristics of model water areas used in numerical experi-
ments: depth distribution (shading, left axes) and slope angles (solid lines, right-hand axes); the linear
slope (left) and the curvilinear slope (right). The position of virtual mareographs are marked at the
top.

Figure 2. Plots of velocity and acceleration variation in landslides moving over different model
slopes: solid line – linear slope; dotted line – curvilinear slope.

of the force of friction, but if the force of friction is not taken into account, then, as
will be shown further, a completely smooth braking is observed.

The analysis of the graphs also shows that for the considered bottom reliefs the
maximal velocity is attained by a landslide moving over the ‘curvilinear’ slope, and
in this case the duration of its motion until a complete stop is shorter, the velocity
changes faster at the acceleration stage, and at the deceleration stage it is approx-
imately the same. However, the duration of braking over the curvilinear slope is
greater, whereas over the linear slope the stage of acceleration lasts much longer.

The patterns of free surface dynamics corresponding to these parameters are
presented in the series of figures (Figs. 3 and 4) and will be discussed further. In
these figures, the dotted lines mark the positions of virtual mareographs, the vertical
axis indicates time in seconds, the horizontal axis indicates the distance from the
wall in meters.

It is the easiest to consider the basic characteristics of the landslide mechanism
of wave formation by the example of the process in a water area with the simplest
linear bottom relief. As is seen from Fig. 3, two waves appear when the landslide
starts, one of them, i.e., the wave of elevation, is pushed by the landslide toward the
deeper area. Its amplitude is almost constant, whereas its length is increased under
the acceleration of the body: its front goes into the open sea approximately at the
velocity of small perturbations

√
g(h(x)), and its back goes before the landslide

(which acts as the wave generator) at a sub-critical velocity, i.e., the wave is per-
manently ‘fed’ by the accelerated body. When the main phase of acceleration ends,



Simulation of surface waves 27

Figure 3. Path of the center of mass of a landslide moving over a linear slope (left, white dotted line)
and the corresponding free surface dynamics.

Figure 4. Path of the center of mass of a landslide moving over a curvilinear slope (left, white dotted
line) and the corresponding free surface dynamics.

gauge A gauge B

gauge gauge D

Figure 5. Comparison of the mareograms: solid line – linear slope; dotted line – curvilinear slope.
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linear slope curvilinear slope

Figure 6. Characteristics of the law of motion of a landslide for different friction angles θ∗. For the
linear slope: (1) – 0.0◦, (2) – 0.5◦, (3) – 1.0◦, (4) – 1.5◦. For the curvilinear slope: (1) – 0.0◦, (2) –
1.0◦, (3) – 2.0◦, (4) – 3.0◦, (5) – 4.0◦.

linear slope curvilinear slope

A

D

Figure 7. Mareograms calculated by mareographs A and D for different friction angles θ∗. For the
linear slope: (1) – 0.0◦, (2) – 0.5◦, (3) – 1.0◦, (4) – 1.5◦. For the curvilinear slope: (1) – 0.0◦, (2) –
1.0◦, (3) – 2.0◦, (4) – 3.0◦, (5) – 4.0◦.
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linear slope curvilinear slope

Figure 8. Characteristics of the law of motion of a landslide for different depths of the initial position
of the mass center dc: (1) – 500 m, (2) – 400 m, (3) – 300 m, (4) – 200 m.

linear slope curvilinear slope

A

D

Figure 9. Mareograms calculated for different depths of the initial depths dc: (1) – 500 m, (2) –
400 m, (3) – 300 m, (4) – 200 m.
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linear slope curvilinear slope

Figure 10. Characteristics of the law of motion of a landslide for different landslide sizes: (1) –
‘standard’ landslide, (2) – landslide with double thickness, (3) – landslide with double length.

linear slope curvilinear slope

A

D

Figure 11. Mareograms calculated for different landslide sizes: (1) – ‘standard’ landslide, (2) – land-
slide with double thickness, (3) – landslide with double length.
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linear slope curvilinear slope

Figure 12. Characteristics of the law of motion of a landslide for different density ratios γ : (1) –
γ = 1.5, (2) – γ = 1.75, (3) – γ = 2.0, (4) – γ = 2.25.
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Figure 13. Mareograms calculated for different density ratios γ : (1) – γ = 1.5, (2) – γ = 1.75, (3) –
γ = 2.0, (4) – γ = 2.25.
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this wave separates from the body and goes off through the right open boundary.
As the landslide moves almost uniformly down the slope, a small lowering wave is
generated before it and a wave of elevation is generated after it.

The second wave arising at the start (lowering wave) is split into two parts, and
one of these parts goes to the shore. During the motion up the slope, its amplitude
slightly increases. Another lowering wave moves directly over the landslide toward
the open sea until the landslide stops. The amplitude of this wave increases at the
stage of the acceleration of the landslide, but this effect is partly compensated by
the drift of the landslide into the zone of greater depths.

When the landslide moves down the sloping bottom at an almost constant ve-
locity (beginning with the time moment of approximately 800 s) and also in its de-
celeration in the area of a constant depth, the amplitude of the lowering wave above
it monotonically decreases and for small velocities the wave becomes practically
indistinguishable.

Reverting to the ‘coastal’ lowering wave, note that this wave is reflected from
the wall positioned on the left boundary and then overtakes the landslide and in-
teracts with the wave accompanying it (in this case the ‘tail’ of the negative wave
moving down the slope takes positive values and generates an elevation wave on
the left wall). This also occurs approximately 800 seconds after the beginning of
the process. At the next stages, the wave reflected from the wall continues its way
toward deep water and leaves through the open boundary.

Two long waves, opposite in their sign and direction of propagation are formed
in the braking of the landslide. These waves have small amplitudes, sufficiently
gentle fronts, and steep backs (as the consequence of an abrupt stop). The negative
wave goes into the open sea, the positive one goes to the shore (after its reflection
and backward motion over the sloping bottom, a lowering wave appears on the wall).

The further comparison of the results obtained for different model reliefs is
performed with the use of mareograms calculated at different mareograph points.
The general idea can be obtained by comparing mareograms registered by the same
mareographs for different reliefs (Fig. 5). In this case we should take into account
the differences in the formation of landslide velocities on different reliefs (Fig. 2).
The considerable predominance (by almost four times) of the amplitude of the nega-
tive wave near the shore calculated over the curvilinear slope is due to the significant
predominance of acceleration. The difference in the depth distribution in the coastal
zone is manifested in some delay of the ‘wave on the curvilinear slope’ compared
to the ‘wave on the linear slope’.

In the case of the curvilinear slope, the mareograph A explicitly shows the wave
with a positive amplitude caused by the confluence of the group of waves consisting
of the elevation waves generated after the lowering waves going to the deeper zone
(the wave over the landslide and the wave reflected from the wall) and also the
elevation wave generated by the stop of the landslide.

In the case of the linear slope the stop of the landslide occurs considerably later
and thus the positive wave generated by it does not merge with the first two.

The mareograms calculated at the point with the coordinate x = 10000 m allow
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us to see separately all important components of the wave mode generated by the
landslide mechanism in the coastal zone. The predominance of the depths of the
linear slope near the shore is manifested in the fact that the waves reflected from the
shore come to this point earlier. The positive impulse following the reflected lower-
ing wave over the curvilinear slope is the result of the above-mentioned confluence
of the set of positive traces of the lowering waves and the wave generated by the
stop of the landslide. This structure is not formed at this point in the case of the
linear slope.

The mareograph C is the only instrument registering the transition of the land-
slide and the related wave effects. One can easily discern in its readings the positive
wave pushed by the landslide and two lowering waves following it. On the linear
slope the first of these waves is the one reflected from the shore and the second one
(with the greater amplitude) is the lowering wave going directly over the body. On
the curvilinear slope these two waves come to the mareograph C in a reverse order.
The similar reverse order of the negative waves takes place at the mareograph D
except for the fact that these lowering waves are the wave reflected from the wall
and the wave generated in the braking of the body.

4.2. Dependence on the value of the friction angle

In order to study the effect of the friction angle θ∗ on the motion of the body and
on the characteristics of the waves generated in this process, we considered the
following values of θ∗: for the linear slope they were 0.0, 0.5, 1.0, and 1.5 degrees
(for the values θ∗ � 2◦ the landslide does not move), for the curvilinear slope they
were 0.0, 1.0, 2.0, 3.0, and 4.0 (here for θ∗ � 5◦ there is no motion of the landslide).

Below (Fig. 6) we present the graphs of the variation of the velocity and ac-
celeration of the center of mass of the body. The representation of the velocity as a
function of the spatial variable (the function of the position of the landslide center of
mass in space) allows us to estimate the effect of the relief variation on the motion
of the landslide. At the same time, the representation of velocities and accelerations
as the functions of time allows us to compare the moments of change of the body
motion character (in particular, the moments of stop) for different parameters of the
problem.

Analysis of the graphs shows that the distance passed by the landslide and its
velocity in the course of motion decrease with the growth of friction. The pattern
for acceleration is slightly different: positive acceleration also demonstrates a clear
inverse dependence on the angle of friction, but the maximal rate of braking on the
linear slope practically does not depend on the angle of friction. On the curvilinear
slope, the maximal (in absolute value) negative acceleration slightly increases with
the growth of the angle of friction. The time of stop of the landslide demonstrates
a non-monotone behaviour on both reliefs: as the friction grows, the total time of
motion first decreases and then increases. We may also note that on the curvilinear
slope for a large angle of friction the acceleration first slightly increases and only
after that begins decreasing.
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As was already said in the description of the general characteristics of the wave
modes generated by an underwater landslide, the first lowering wave registered near
the wall is generated at the start of the body motion and then goes toward the shal-
low water, i.e., in the direction inverse to the motion of the landslide. Its amplitude
depends on the initial acceleration, which explains such difference in the registered
negative values. The first positive wave registered near the shore is formed when
the negative waves (the wave moving above the landslide and the one reflected from
the shore, which is generated at the start of the body motion) move along the slope
toward deep water. This positive wave is explicitly seen on the linear slope and its
amplitude inversely depends on the value of the friction angle (see Fig. 7). The sec-
ond positive wave appears at the braking of the body and breaks at the moment when
the landslide finally stops. The amplitude of this wave is directly proportional to the
absolute value of the acceleration just before the stop, therefore, it is the maximum
for the case of the greatest angle of friction of the linear slope.

On the curvilinear slope the process of braking develops faster, therefore, both
positive waves practically merge, especially for large angles of friction. Here we
have the effect that braking occurs at different depths: for large θ∗ the depth of
the beginning of braking is smaller, which slightly increases the amplitude of the
generated wave. As the result, it occurs that the maximal positive amplitude is ap-
proximately the same for all considered values of the angle of friction, although for
greater values of θ∗ this amplitude comes to the shore later, and the length of the
corresponding wave is smaller.

Under the variation of the friction force parameters, the waves going toward
deep water and spreading over that area experience similar changes.

4.3. Dependence on initial depth

In order to study the influence of the initial depth on the wave formation charac-
teristics, we considered the following different values of initial depth dc: 500, 400,
300, and 200 m.

As was to be expected, the character of motion of the landslide on the linear
slope presents no differences with respect to the initial depth. Naturally, only the
time of arrival of the body to the point of the depth break and the time of deceleration
of the body on the even bottom are different. Due to the equality of the velocities
by the moment of this deceleration, the point of stop of the body is the same in
all the cases. On the curvilinear slope the situation is slightly different: the smaller
depths are observed here in zones with smaller bottom slope angles. Therefore,
the initial acceleration of landslides starting from smaller depths are lower as well.
However, as such landslide moves and comes to the zone with the maximal slope
angle, the acceleration of the ‘shallow water’ landslide grows and almost reaches
the values that the ‘deep water’ landslides reach mush faster. The maximal values of
the velocities increase, as the depth decreases, and the points of stop of landslides
differ insignificantly for any initial depth.

The dependence of the motion laws of underwater landslides on the initial
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depth of the center of mass becomes apparent in the generated wave modes, so that
whereas the amplitude of the first negative wave going into the zone of smaller am-
plitudes on the linear slope monotonically increases with the decrease of the initial
depth of the center of mass, on the curvilinear slope the decrease in the initial depth
leads to an insignificant decrease in the amplitude of the wave trough. The ampli-
tudes of the first positive waves near the ‘shore’ change practically identically over
different slopes under the decrease of the depth: the smaller the depth, the greater the
amplitude. However, one can notice that on the linear slope the time of the arrival of
the first positive wave decreases with decreasing depth, whereas on the curvilinear
slope the dependence is reverse. The amplitudes of the second waves generated in
the braking of the body are approximately the same for all initial depths, which is in
good accordance with the equality of the velocities and accelerations under braking
and the final stop.

The mareograph D registers a similar pattern as a whole. On the linear slope the
positive wave pushed by the body and the negative one following it (reflected from
the shore) indicate a sufficiently strong direct dependence on the depth, and the next
lowering wave appearing at the braking of the body in all the cases is the same, as
well as the forthcoming ‘tail’, which is the effect of the positive ‘wave of braking’
reflected from the left wall. In contrast to the linear slope, on the curvilinear slope
the first positive wave pushed by the landslide and the second negative wave coming
after the reflection from the wall slightly decrease with increasing depth. On the
contrary, the second positive and the first negative ‘waves of braking’ demonstrate
direct dependence on the initial depth.

4.4. Dependence on the size of the body

In order to study the dependence of the parameters of the wave mode generated
by the landslide on its spatial characteristics (length and thickness), we performed
the calculations where these characteristics were doubled with respect to the stan-
dard values. Thus, we considered the cases b = 5000 m, T = 25 m (standard);
b = 5000 m, T = 50 m (double thickness); b = 10000 m, T = 25 m (double length).

As is seen from the graphs in Fig. 9, the law of motion of the landslide does not
vary under the change of its thickness (this directly follows from the formula of the
law of motion), but the increase in the landslide length is expressed differently on
different slopes. On the one hand, this is caused by the specifics of the entrance of
the parameter of length into the formula of the motion law and, on the other hand, by
the fact that with the increasing length the landslide body covers additional sections
of the slope where the inclination angle may vary. For the curvilinear landslide this
effect becomes apparent from the very beginning of the motion, but for the linear
slope this occurs when the landslide goes from the sloping area to the bottom of a
constant depth. Thus, on the linear slope the initial acceleration of the landslide does
not depend on its length and the maximal absolute value of its negative magnitude at
braking on an even area is slightly less, because as the length of the landslide grows,
its left side remains on the sloping area for a longer time. On the curvilinear slope,
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the initial acceleration decreases with the increasing length, and braking before the
complete stop is slower. In total, the velocity for a longer landslide is higher.

Concerning the generated waves (Fig. 11), the double increase of the sizes re-
sults identically in an almost similar increase in the amplitudes of the positive and
negative waves. The effect of the double increase of the wave amplitudes under the
double increase in sizes holds for the curvilinear slope as well. In some fragments
of the mareograms the effect of the double increase of the landslide thickness is
expressed stronger.

4.5. Dependence on density characteristics

The relationship between the parameters of the surrounding liquid and the landslide,
the laws of its motion, and the characteristics of the wave modes generated by that
motion seems the simplest. The independent variable of the required dependence
is the ratio of the densities γ = ρsl/ρw. In the calculations this parameter took four
values: 1.5, 1.75, 2.0, 2.25.

For each of the model water areas, if the ratio of the densities γ grows, the land-
slide velocity monotonically grows, the maximal absolute values of the speeding-up
and braking also grow, the durations of motion are in the inverse dependence, and
the coordinate of the final stop remains practically unchanged (Fig. 12).

The monotonicity of the dependence of the landslide motion characteristics on
the ratio of densities is translated onto the characteristics of the wave mode regis-
tered by the three virtual mareographs (Fig. 13). The amplitudes of the positive and
negative waves monotonically grow with the growth of the parameter γ .

5. Conclusion

In the study of the landslide mechanism of surface waves formation, we made an
attempt to proceed from the consideration of the simplest linear slopes to curvilinear
ones. This attempt allowed us to obtain a series of new results. The most important
of these results is the derivation of the motion law for an underwater pseudo-rigid
landslide. This law takes into account the curvature of the slope where the landslide
moves under the effect of the forces of gravity, buoyancy, friction, and drag.

The numerical experiments performed with the use of the new motion law
demonstrated the peculiarities caused by variations of landslide sizes, of initial
depth, of density characteristics and friction coefficients on different reliefs. It was
shown that the peculiarities of the wave modes generated by an underwater landslide
are mainly determined by the peculiarities of the landslide acceleration and by the
dependence of this acceleration on the parameters of the phenomenon mentioned
above.
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