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Simulation of surface waves generation
by an underwater landslide

L. B. CHUBAROV∗, S. V. ELETSKII∗, Z. I. FEDOTOVA∗,
and G. S. KHAKIMZYANOV∗

Abstract — The present paper discusses the results of the numerical simulation of the process of
surface wave generation by a moving underwater landslide. The computational algorithms are based
on finite difference schemes for shallow water equations of different orders of hydrodynamic approx-
imation and equations for potential ideal fluid flows with a free boundary. The dependence of the
parameters of generated waves on the law of motion of the migrating bottom fragment is studied.

The interest in the problems of wave generation by underwater landslides is due to
persistent attempts to relate the known facts of the occurrence of anomalous tsunami
waves to the sliding mechanism of their generation, as opposed to the conventional
seismic mechanism [16, 17]. Here anomaly implies an inconsistency between a
weak seismic event and a significant tsunami wave near the coast. In the past years
such phenomena have been recorded near the coasts of Canada, Turkey and Papua
New Guinea.

Under natural conditions, an underwater landslide represents the motion of a
mass of material down the slope of the bottom. The large volume of the moving
mass induces waves on the water surface, which are close in their characteristics to
waves caused by a tsunami-induced earthquake.

A hypothesis put forward in the 1930s states that even a weak earthquake can
cause the motion of considerable sliding masses in the coastal zone, whose origin
is explained by the accumulation of alluvia carried by rivers, avalanches from the
nearest heights, etc. There are situations where these masses turn out to be fully or
partially flooded. In the latter case, the wave generation process proves practically
simultaneous with the process of their running up the beach.

The known approaches to the simulation of landslides include the simulation
of the motion of an absolutely rigid body [6, 16, 17] or a set of such bodies [15],
simulating a fluid flow of different density, viscosity, etc. [8, 10, 14], or simulating
the motion of a plastoelastic medium [5] with or without taking into account the in-
teraction with the ambient fluid. In some situations, it appears promising to simulate
the phenomenon as a two-layer fluid with layers of various densities and viscosity
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coefficients [7, 9, 11]. The specifics of the simulation of respective surface waves is
that the tsunami waves of the sliding origin are generated in the coastal zone of a
small depth, the duration of the landslide motion is quite long and comparable with
the period of the generated wave; the characteristic depth and the vertical size of the
landslide are comparable too.

The aim of the present paper is to develop and study the hydrodynamic compo-
nent of a consistent mathematical model of earth motion and waves transformation
on a free surface. The mathematical modelling of these wave regimes is imple-
mented by an hierarchy of wave hydrodynamics models comprising the equations
of shallow water theory in approximations that take into account nonlinear and dis-
persion effects and full equations for ideal fluid wave hydrodynamics. This makes
it possible to solve one of the main problems of mathematical modelling, i.e., spec-
ify the domains of the adequacy of mathematical models by comparison with data
of laboratory experiments. In this paper, comparison was made with the results of
the experiments [3] determining the parameters of the wave regime caused by the
motion of a fully submerged body down the slope.

For hyperbolic equations we used simple cost-effictive and finite-difference al-
gorithms based on second-order approximation shemes, which comprise a number
of parameters that allow us to control the contribution of the nonlinear and disper-
sion effects and use the smoothing procedure selectively. To approximate the full
hydrodynamic model we have used schemes on a curvilinear grid that adapts to the
geometry of the computational domain.

The results of numerical experiments allowed us to identify the most substantial
characteristics of the phenomenon studied, investigate the peculiarities of the wave
regime and their dependence on the slope of the coastal area, the distance from the
wave generation zone, the presence or absence of protection structures, the relative
importance of nonlinear and dispersion effects caused by abrupt changes in the ve-
locity of the ‘landslide’ in the beginning and in the end of its motion. Some of the
results obtained are given in the paper.

The paper consists of three sections. In Section 1, we consider the mathematical
models and computational algorithms. Section 2 describes the problem; in Section 3
we discuss the results.

1. MATHEMATICAL MODELS AND COMPUTATIONAL
ALGORITHMS

Linear, nonlinear, and nonlinear dispersion systems of shallow water equations gen-
eralized for the case of a nonstationary bottom surface are used as mathematical
models of free surface dynamics of a heavy fluid [2]. We consider the case of a
single spatial variable.

The nonlinear shallow water equations were written in the divergent form, which
ensured the use of the algorithms constructed for the simulation of nearly discon-
tinuous flows on the ‘water-land’ interface and the adequate reproduction of the
motion of the shore line. Such wave regimes are caused by tsunami waves running
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up the beach and the motion of sliding masses along the bottom in one of the above
models [7].

Thus, for the basic model we consider the equations

ht +(hu)x = 0

(hu)t +
(

hu2 +
gh2

2

)
x

= ghHx

(1.1)

where u is the averaged flow velocity, h is the total fluid depth: h = η + H , η is the
free surface elevation, H is the depth of the channel with undisturbed fluid. All the
above quantities are functions of the variables x, t. The depth H is represented as
H (x, t) = H̃ (x)−b(x, t), with b(x, t) = 0 for t = 0. The function b(x, t) = 0 describes
the bottom surface dynamics and is supposed to be known.

The system of equations for the nonlinear dispersion model with the same vari-
ables has the form
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The terms on the right-hand sides of these equations describe the dispersion and are
of the order O(H0/l0)

2, where H0 and l0 are the typical depth and horizontal size.
The known McCormack scheme was used to approximate system of equations

(1.1). The difference scheme studied in [4] was modified for nonlinear dispersion
equations (1.2). Both schemes are of the second-order approximation. A smoothing
procedure was used to eliminate nonphysical high-frequency oscillations.

The impermeability condition was given on the left boundary of the domain cor-
responding to a vertical wall. The non-reflection boundary condition [13] ensuring
free wave outflow was given on the right boundary. At the initial instant for t = 0,
the state of rest with an undisturbed free boundary was specified.

The simulation of the surface wave generation process by a model landslide
shaped as a semi-ellipse was also based on the hydrodynamic model of potential
plane-parallel flows. The two-dimensional area filled with the fluid was bounded
from below by a partly mobile impermeable bottom. The impermeability condition
was given on this part of the boundary, and the coincidence of the normal vector
components of the fluid velocity and the moving bottom velocity was specified for
the mobile bottom fragment. The fluid was bounded by a free surface from above.
The mathematical formulation of the problem is to determine the velocity potential
satisfying the Laplace equation and the functions describing the free boundary on
which the kinematic and dynamic conditions have to be satisfied. In calculations
we used moving grids, therefore, the derivation of finite difference equations was
based on the approximation of equations written in the moving curvilinear coordi-
nate system. In calculations we used the simplest grids that adapt only to the domain
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Figure 1. Computational grid for simulation by the full hydrodynamic model.

boundaries, including the moving ones. The second family of coordinate lines con-
sisted of stationary vertical rectilinear segments uniformly spaced along the slope
and rarefied by the law of geometric progression in the part of the basin that had the
horizontal bottom (see Fig. 1). The nodes of the moving grid could move only in the
vertical direction along the coordinate lines.

In the calculations we used a stepwise numerical algorithm in which at each
time layer we first calculated the new values of the potential on the free boundary
by the dynamic condition, which were then used as the Dirichlet boundary condition
for the calculation of the potential in the interior of the domain, which satisfies the
finite difference analogue of the Laplace equation. Using the obtained values of the
potential, we specified the new location of the free boundary for the given time layer
and constructed a grid for the successive time layer. A detailed description of the
algorithm and the form of the finite difference equations on a moving curvilinear
grid are given in [12].

2. DESCRIPTION OF MODEL PROBLEM

Below we consider the problem of studying wave regimes induced by the motion
of a submerged solid body down a flat coastal slope. The shape of the solid body
imitating a landslide is semi-elliptical. The major and minor semi-axes of this ellipse
are 25 cm and 5 cm, respectively. The left boundary of the basin at a distance of xg
from the ‘vertex’ of the ‘landslide’ is a vertical impermeable wall with the abscissa
x = 0. The water depth near this wall is assumed to be small. The basin in its right
part has a horizontal bottom with a water depth of 90 cm (see Fig. 2).

We considered the uniformly accelerated motion of the model landslide with
zero initial velocity. At a preset instant the ‘landslide’ instantly stopped, which al-
ways occurred on the sloping part of the bottom. The calculations continued long
beyond the time period of the ‘landslide’ motion. The angle of the underwater slope
varied in wide limits.

The variation of the free surface in time was registered at four points. The first
point was located over the vertex of the semi-ellipse and had the abscissa xg, the
three other points were at a distance of lm = 50 cm from one another. The table
gives the initial data for the numerical experiments whose results were compared
with the data of the laboratory experiments [3].

Here ϕ is the slope angle, HW is the water depth near the left wall, xg is the ab-
scissa of the vertex of the semi-ellipse at the initial instant t = 0, a is the ‘landslide’
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Figure 2. Scheme of laboratory experiment and computational domain.

Table 1.

ϕ HW xg a T S

10 0.048 0.66 0.6 3.3 3.27
15 0.043 0.40 0.6 2.7 2.19
30 0.046 0.28 1.3 1.3 1.10
45 0.040 0.27 2.49 0.7 0.61

acceleration, T is the time of its motion down the slope, S is the distance travelled
down the slope. All linear sizes are given in metres, the time in seconds, the angles
in degrees.

3. SIMULATION RESULTS

The qualitative characteristics of the simulated wave process are presented in
Figs. 3 – 5. Each of these figures consists of two groups of patterns. The fragments
(a) show the relief patterns of the process dynamics: the time varies vertically in
the positive direction (from 0 to six seconds) and the distance along the basin varies
horizontally. The fragments (b) give the same information as isolines of the free
boundary levels. In each of the fragments on Figs. 3 – 5 the left parts represent the
landslide motion and the right parts indicate the wave regime generated by this mo-
tion. Figure 6 illustrates the transformation of waves in their motion. All the figures
show results obtained for a slope of 15 degrees. Other data are not included in this
paper for lack of space.

The calculations by the linear and nonlinear shallow water models showed that
the nonlinearity effect for the version considered (a slope of 15 degree) is very
small, so that the results obtained by the linear and nonlinear models are essen-
tially identical. Figure 3 shows that at the onset of the landslide motion, an eleva-
tion wave forms on the water surface propagating towards a larger depth, its length
gradually increases until the shape of this wave approaches the shape of landslide.
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(a)

(b)
Figure 3. Computational results by the nonlinear shallow water model.

The wave amplitude practically does not change from one mareograph to another
(see Fig. 6). As the slope angle increases, the wave amplitude and the wavelength
somewhat decrease and, conversely, they increase when the slope angle decreases.
The rising wave is followed by a falling one with a much larger amplitude. When
the falling wave propagates, its amplitude increases and in the fourth mareograph
reaches (Fig. 6d) a value almost three times larger than that in the first mareograph
(Fig. 6a). In varying the slope angle, the above trends persist.

After the landslide stops, a rising wave propagating towards the coast is formed.
The amplitude of this wave slightly increases in motion but the wavelength remains
virtually unchanged. In Fig. 3 the above effect is represented as a specific ‘triple’
configuration. After the landslide stops, the deep-water wave passes to the horizontal
bottom zone, which is accompanied by a change in the velocity of this wave. We
also note the effect of the reflection of the shallow water wave from the wall and the
occurrence of a rising wave moving to a larger depth. As the wave moves over the
slope, its amplitude decreases and the depression following the wave flattens.

We should emphasize some features of the wave regime calculated by the non-
linear dispersion model (Fig. 4), in particular, the strong sensitivity of the math-
ematical model to input data smoothness, which is illustrated by the distortion of
the free surface profile at the point of the depth gradient variation, i.e., the point
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(a)

(b)
Figure 4. Computational results by the nonlinear dispersion shallow water model.

of contact of the slope zone with the horizontal bottom zone. Under the dispersion
effect the number of waves increases, the free surface rearrangement at the moment
of the landslide stop becomes more complicated, the amplitude of the waves propa-
gating towards the shallow water decreases. The above effects may be caused by a
more accurate account of the vertical processes in the nonlinear dispersion model.
The validity of this explanation may be confirmed or refuted by comparison with
the computational results based on the full (vertically two-dimensional) model and
with experimental data.

The results shown in Fig. 5 confirm, to some extent, the above assumption. They
demonstrate a sufficiently complex wave pattern in which the landslide motion gen-
erates a series of waves propagating to the deep-water zone. The above components
of the wave regime occur, but they are less pronounced than those in the linear
and nonlinear formulations of the shallow water theory. Note that these calculations
were carried out in a smaller computational domain because of the large bulk of
calculations.

The deciding argument can be obtained from a comparison with experimental
data. For this purpose we should turn to Fig. 6, its fragments show mareograms
measured in a laboratory experiment and calculated by all the models at each mare-
ograph points for a slope angle of 15 degrees. Note that all the graphs coincide in
their first absolute minimum.

According to the mareograms, the poorest coincidence is observed in the first
mareograph located immediately above the center of the initial position of the land-
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(a)

(b)
Figure 5. Computational results by the model of potential fluid flows with free surface.

slide. In the subsequent mareograms all the models used quite adequately reproduce
the form of the first oscillations, the nonlinear equations of shallow water theory
leading to a considerable amplitude excess. The linear model proves sufficiently
close to the experimental data at the initial stage of the process. However, later the
vertically averaged equations result in a simplified wave regime, rather dissimilar
to that obtained in the experiment. The above mentioned individual elements of the
wave regime are quite evident, i.e., the leading rising wave, the subsequent consid-
erable decrease in the level, the wave occurring at the instant the landslide stops,
and the wave reflected from the coast.

Finally, the equations of the full hydrodynamic model reproduce not only the
frequency variations of the wave regime, but also allow us to calculate the most ac-
curate values of the amplitudes in the whole wave train, which is a serious argument
for taking into account the vertical effects when modelling the landslide mechanism
of surface wave generation.

The next series of patterns (Fig. 7) actually demonstrates the vertical structure
(streamlines) of the flow studied. Over the initial period of the landslide motion
(Fig. 7a) a ‘condensation’ zone periodically occurs in front of it rolling over the
moving obstacle; a decrease in the level on the water surface occurs immediately
behind the landslide, in the near-surface layer the streamlines assume a character-
istic arcwise form. Before the landslide stops (Fig. 7b), these structures are finally
formed. At the moment of its stop (Fig. 7c) the streamlines are pressed to the land-
slide transforming the final stage of the process to flowing around a stationary body
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(a)

(b)

(c)

(d)
Figure 6. Experimental and calculated data in four successively located mareographs, a slope of 15
degrees.
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(a) (b)

(c) (d)

(e)

Figure 7. Streamlines: (a) – at the initial stage of the process, (b) – before the landslide stop, (c) –
the instant of the landslide stop, (d) – immediately after the landslide stop, (e) – at the final stage of
calculation.
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(a)

(b)

(c)

(d)
Figure 8. Computational results using shallow water theory for describing landslide motion: (a) –
without friction, (b) – with low friction, (c) – with moderate friction, (d) – with intense friction.
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(Figs. 7d and 7e). In this case wedge-shaped ‘condensation’ zones arise as well (see
Fig. 7d) and roll over the landslide towards the larger depth. Note that some distor-
tions result from the variations in the grid structure in the zone of the transition from
the slope to the constant-depth bottom.

4. CONCLUSION

The results of the laboratory and numerical experiments given in the work suggest
the possibility of using approximate mathematical models for describing the initial
stage of the surface waves generation by the landslide mechanism and point to the
fundamental importance of the assessment of the vertical processes that, in essence,
specify the wave field structure.

We should consider the new nonlinear dispersion models with an improved dis-
persion relation and continue a comprehensive study using rather time-consuming
full hydrodynamic models. It is also necessary to place primary emphasis upon
the initial data smoothness. As to the computational algorithms, particular attention
should be given to the computational grid adaptation to the changing bottom shape
and methods for constructing the efficient high-precision schemes for approximat-
ing equations with higher derivatives.

There are new prospects in the simulation of the motion of sliding masses
which, to a considerable extent, specifies the character of the wave regime. Fig-
ure 9 presents, as an example, the results obtained by the shallow water model and
for the description of the motion of a landslide regarded as a double density fluid
moving down a slope of 15 degrees with a given friction. This formulation of the
problem is considered in greater detail in [1]. As seen from this series of patterns,
the change in the landslide motion model fully specifies the wave regime on the
free surface, which is still of a simplified character. As the friction increases, the
distance the landslide travels decreases and its spreading reduces. For a low level
of friction the landslide at some moment starts moving towards a larger depth, its
motion down the slope accelerated. The wave at the initial stage fully follows the
trajectory of the landslide and after its stops continues to move to the constant-depth
area. Its amplitude considerably decreases with increasing friction. As the friction
increases, the landslide remains practically stationary, whereas a weak perturbation
occurring at the start of the motion propagates along a constant trajectory.
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