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For numerical solution of problems of hydrody�
namics of long surface waves propagating in real reser�
voirs, it is advantageous to use models in which the
region of applicability is associated with the character�
istic scales of the wave process [1, 2]. An expansion of
the circle of actual problems related to the develop�
ment of coastal territories stimulates the creation of
new models, and this fact results in variety of the sys�
tems of differential equations corresponding to these
models due to a variety of methods and simplifying
assumptions. Among these differential equations,
there are also some that formally approximate the ini�
tial problem without providing an adequate descrip�
tion of the physical process or are inconvenient for
numerical implementation.

The purpose of this study is formation of a uniform
approach for constructing long�wave approximations
in order to provide a hierarchical chain of shallow�
water equations of the first and second approximations
having a succession of physically substantial proper�
ties. Here we continue the recent investigations in [3–6].
It is necessary to acknowledge [7–10] and others as
the first studies on this theme.

The derivation of shallow�water models taking into
account the dispersion is based on the Euler equations
for an ideal incompressible fluid on a rotating sphere,
the mobility of the bottom surface being taken into
account, while further passage along the hierarchy
from completely nonlinear equations with dispersion
towards simplifications proceeds with inheritance of
the most important properties, in particular, the laws
of conservation. We succeeded in writing the obtained
nonlinear�dispersive (NLD) equations both on the
plane and on the sphere in a universal compact form,
which structurally coincides with the set of gas�
dynamic equations.

EULER’S EQUATIONS 
IN THE THIN�LAYER APPROXIMATION

The spherical system of coordinates Oλθr is used
with the origin at the center of a sphere of radius R
rotating with a constant velocity Ω. We designated the

longitude by λ, and the addition to the latitude ϕ  <

ϕ <  we denoted by θ =  – ϕ, while r is the radial

coordinate. It is assumed that the water layer is limited
from below by an impenetrable mobile bottom r = R –
h(λ, θ, t) and from above by a free surface r = R +
η(λ, θ, t). As external forces, we considered only the
force of Newtonian attraction g directed to the center
of a rotating sphere. Considering the thickness H =
η + h of the water layer as small in comparison with R,
we assume that the value of g = |g| and the water density
ρ are constant in the entire layer, ρ ≡ 1. The mathe�
matical models of the long�wave hydrodynamics are
derived here from Euler’s equations written with sin�
gling out the radial direction:

(1)

where the vectors U = (U1, U2) = ( , ) and V = (V1, V2)
are composed correspondingly from the contravariant
and covariant components of the “horizontal” com�
ponent of the velocity vector; in this case, V1 = (Ω +
U1)r2sin2θ, V2 = r2U2, the radial velocity component is

designated by W = , J = –r2sinθ, S = (0, S2), S2 =
(Ω + U1)2r2sinθcosθ, S3 = (Ω + U1)2rsin2θ + (U2)2r,

and P is the pressure, ∇ = , . On the layer

boundaries, the boundary conditions are put
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where rη = R + η, rh = R – h.

The derivation of the shallow�water equations
assumes singling out the basic scales. Let L and h0 be
the characteristic sizes in the “horizontal” and radial
directions in the layer, a0 is the characteristic ampli�

tude of waves, while α = , μ = , and ε =  are the

parameters of nonlinearity, frequency dispersion, and
relative thickness of the water layer, respectively. The
dimensionless variables are defined from the relations

where λ0 = , t0 = , and ω0 = . Writing Euler’s

equations (1) in dimensionless variables and rejecting
the terms of the order of O(ε), we come [5] to the thin�
layer approximation. Adding the dimensionless
boundary conditions, we obtain a problem with small
parameters α and μ, which is convenient for deriving
the shallow�water models.

HIERARCHY OF MODELS 
IN THE SPHERICAL GEOMETRY

The hierarchical chain of the shallow�water models
of the second hydrodynamical approximation has a
model in its apex in which the desired values are the
total depth H of the fluid and a certain vector function ua

approaching the “horizontal” velocity U:

(2)

For example, the “horizontal” velocity of flow on a
quite certain surface r = ra(λ, θ, t) lying between the
bottom and the free boundary, i.e., ua(λ, θ, t) = U(λ, θ,
ra(λ, θ, t), t) is accepted for ua in [11]. After determin�
ing the choice of velocity ua, we obtain the set of
branchings of hierarchical chains of the shallow�water
models.

Let us consider one such chain, which is obtained
when choosing ua in the form of the “horizontal”
component of the 3D�flow velocity averaged over the
fluid�layer thickness:
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(3)

Using expansion (2) with ua = u and carrying out the
transformations of equations in the thin�layer approx�
imation with an accuracy O(μ2) inclusively, we come to
the closed NLD model describing the dynamics of
long waves in the rotating spherical system of coordi�
nates:

(4)

(5)

where v = (v1, v2), v1 = (Ω + u1)R2sin2θ, v2 = R2u2,
s = (0, s2), s2 = (Ω + u1)2R2sinθcosθ,

(6)

π(r) is the distribution of the main part of pressure Р in
the long�wave approximation on the coordinate r (rh ≤
r ≤ rη):

(7)

(8)

The derivation of Eqs. (4), (5), uses a number of
methods developed in [3–5]. It should be noted that
no additional restrictions, except Eq. (2), were used in
the derivation in contrast to, for example, [3, 11],
where, in essence, the assumption of potentiality of
the initial 3D flow is used for constructing the NLD
models in the spherical geometry.

It is important that Eq. (5) of motion assumes writ�
ing the momentum�balance equation in quasi�conser�
vative form:

(9)

where u ⊗ v is the tensor product of vectors. Equations (4),
(9) have the same structure as the gas�dynamics equa�
tions; therefore, it is possible to use similar methods
for the numerical solution.

One more important property of NLD model (4),
(5) is that it, in contrast to the NLD model [11],
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assumes the law of total�energy balance as a conse�
quence consistent with a similar law for the 3D equa�
tions in the thin�layer approximation. For consistency,
we mean the following. If we use the expansion of
velocity with respect to the parameter μ2 in the law of
total�energy conservation for the 3D model and reject
the terms of the order of O(μ4), we come to the same
equation of the total�energy balance, which follows
directly from NLD Eqs. (4), (5) after the correspond�
ing equivalent transformations:

(10)

In this case, the total energy of the 3D flow averaged
over the layer thickness with taking into account rep�
resentation (2) is accepted as the expression for the
total energy Е in the NLD model:

(11)

where the kinetic energy К is expressed through the
variables of the NLD model from the formula

(12)

u · u = (u1Rsinθ)2 + (u2R)2, w = –Dh – (r – rh)(∇ · u)
(w is the main part of the radial velocity W in the
expansion with respect to μ2).

In the case of a motionless bottom, Eq. (10)
accepts a conservative form, which completely coin�
cides with the form of the law of total�energy conser�
vation in an ideal gas. It should be noted that the pres�
ence of the consistent balance equation of total energy
makes it possible to carry out an additional control of
calculations using the numerical methods of the solu�
tion instead of only confirming the physical validity of
the NLD model.

Further downwards along the hierarchical chain, in
the shallow�water models following from total NLD
model (4), (9) (obtained without the assumption of
the smallness of parameter α) at various simplifying
assumptions, the equation of continuity for all models
has the same form of Eq. (4). If, for example, we
assume that α = O(μ2) and use the equality Н' = h' +
αη' in the dimensionless expressions for the average

pressure  and the relative pressure  to the bottom,

we come to weakly dispersive models in the spherical
geometry after rejecting the terms of the order of
O(αμ2) and O(α2μ2) and returning to dimensional val�
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ues. The equation of motion of this model retains the
form of Eq. (9), and only expressions (6), (8) for p and
π0 are changed:

(13)

This model also admits the balance equation of total
energy as a consequence consistent with the energy�
balance law in the 3D model, which has the same form
of Eq. (10) as in the total NLD model, only now the
kinetic energy is calculated from the modified formula

(14)

Omitting the description of other links of the hier�
archical chain under consideration, we pass to its
lower link—the classical (dispersionless) shallow�
water models on a sphere. It can be obtained, for
example, if we neglect all dispersive terms, i.e., the terms
of the order O(μ2) in dimensionless expressions (13).
Then we obtain again the same set of Eqs. (4), (9) but
with other expressions for p and π0:

(15)

For the classical shallow�water model, the form of
energy Eq. (10) also remains constant; however, the
kinetic energy is calculated now from the simplified

formula K = .

Thus, the hierarchical chain of nonlinear shallow�
water models enclosed in each other in the spherical
geometry based on the stage�by�stage simplification of
the dispersive component is constructed, the form of
writing of all models in the chain and the form of Eqs. (4),
(9), (10), for the balance relations being retained.

HIERARCHY OF SHALLOW�WATER MODELS 
ON A PLANE

We consider one more vertical hierarchical chain of
the shallow�water models, in the derivation of which
the fluid flow is initially considered in the Cartesian
system of coordinates Oxyz, the axis Oz of which is
directed vertically upwards, and the coordinate plane Oxy
coincides with the horizontal unperturbed free sur�
face. In this case, we consider that the layer of an ideal
incompressible fluid limited from below by a mobile
bottom set by the function z = –h(x, у, t) and from
above by the free boundary z = η(x, y, t) [1, 2].

Substituting the analogue of representation (2) in
Euler’s equations
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(16)

and choosing the velocity ua in the approximate model
from the formula

(17)

similarly to Eq. (3), we come to a completely nonlin�
ear NLD model on the plane, the equations of which
have the same form of Eqs. (4), (5) as in the spherical
coordinates with only difference being that in the

plane case s = 0, v = u, ∇ = , , ∇· u = ux + vy,

and the analogue of the formula (7) is used for calcu�
lating the pressure in the NLD model:

Momentum�balance equation (9) here takes the form 

(18)

and the balance equation of total energy accepts the
same form of Eq. (10) as in the spherical case but,
instead of expression (11) for the total energy, it is nec�
essary now to take the formula

(19)

and to replace u · u with (u2 + v2) in expression (12) for
the kinetic energy.

By analogy to the spherical case, we derive the
weakly dispersive equations and the shallow�water
equations of the first approximation, which is written
in the form of Eqs. (4), (18). Like the set of total NLD
equations on the plane, they are invariant with respect
to Galileo’s transform and have balance equation (10)
of total energy consistent with the 3D model, the pres�
sure being determined by formulas (13) or (15),
respectively.

The models of this vertical chain are derived from
the 3D Euler equations, which were written in the
Cartesian system of coordinates. However, the same
models on the plane can be obtained directly from the
corresponding spherical models by establishing the
“horizontal” relations due to the limiting transition
from the spherical geometry to the plane one. We con�
sider, for example, the total NLD model with Eqs. (4),
(9) and expression (7) for the pressure. To obtain the
analogue of this model on the plane, it is necessary first
to redefine the functions h(λ, θ, t) and η(λ, θ, t) so that
they set the deviations h0(λ, θ, t), η0(λ, θ, t) of the sur�
faces described by them from an unperturbed free
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boundary of the water layer instead of a sphere of
radius R. For the shallow�water models under consid�
eration in the spherical geometry, the unperturbed free
boundary is described by the equation r = R + z0(θ),
where

therefore, the following equalities hold

and the modified momentum�balance equation can
be written in the former form of Eq. (9) with taking
into account that now

Further, in a certain vicinity of the fixed point (λ∗, θ∗),

we consider the transformation of coordinates

and introduce the components of the velocity vector
u = (u, v): u =  = Ru1sinθ∗, v =  = –Ru2. The cir�

cumpolar regions are not considered, i.e., θ0 ≤ θ ≤ π – θ0,
θ = const > 0. Then it is possible to consider that the
function sin–1θ is limited. We also assume that the
variables Н, u, v, and their derivatives are limited. If
we assume that the region is small in the direction of
latitude, i.e., the value of δ = θ – θ∗ is small, passing

to new variables in mass�balance equation (4) and in
the modified momentum�balance equation, and
neglecting the terms of the order of O(δ) or O(1/R) in
the obtained equations, we come to the set of equa�
tions of the total NLD model on the plane
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(21)

the momentum�balance equation of which differs
from Eq. (18) by the presence of the term with the vec�
tor f = (f1, f2) reflecting the effect of the Coriolis force:
f1 = f∗v, f2 = –f∗u, f∗ = 2Ωcosθ∗ is the constant Cori�

olis coefficient.

It should be noted that the balance equation of total
energy for model (20), (21), coincides with that,
which took place for the NLD model considered
above on the plane obtained at Ω = 0. It is clear that
NLD model (20), (21) generates a new vertical hierar�
chical chain of the shallow�water models on the plane
with taking into account the Coriolis force.

Thus, the hierarchical chains of the mathematical
shallow�water models enclosed in each other are con�
structed on a rotating sphere and on a plane; they have
the balance relations of identical structure similar to
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that of the gas�dynamics equations. It means that for
the numerical solution of problems using the con�
structed NLD models, it is possible to apply the algo�
rithms based on well investigated numerical methods
of gas dynamics similar to how it is implemented
within the framework of the classical dispersionless
shallow�water equations, while the presence of the law
of total�energy balance plays an important role for ver�
ification of the numerical algorithms and the control
of calculations.

It is obvious that it is possible to expand the set of
hierarchical chains considered here while adding new
ones. For example, each nonlinear model naturally
generates a chain of linearized shallow�water models
enclosed in each other with the same form of writing
the balance relations and also serves as the origin of the
chain of models with decreasing dimension on space.
Other chains are obtained if we take a value different
from the average velocity (17) as the velocity of the
approximate model. The models of such chains can
have improved dispersive properties [12]; however, in
the case of a mobile bottom, they have an extremely
cumbersome form of writing the equations [13] and
have no balance law of total energy. Therefore, a mod�
ification of the models of these chains is required. Cer�
tain steps in this direction are made in [14] in which,
in particular, it was shown that the modified models of
this group admit the writing of the momentum�bal�
ance equation in a laconic quasi�conservative form.
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