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Papers [19, 20] are commonly considered as a starting point of numerical simulation of surface waves
within the framework of nonlinear-dispersive (NLD) models. These papers present a model NLD equation for
a unidirectional propagation of waves in a channel (the so-called regularized equation of long waves or RLW-
equation), a Boussinesq system of equations for a curvilinear bottom surface, and a �nite di�erence scheme
approximating those equations. The appearance of these papers initiated a sustained interest to derivation
of various variants of NLD models and the corresponding algorithms of their numerical implementation.

The �rst �nite di�erence methods were based on known di�erence schemes for classic shallow water
equations, at that moment these equations were the most common model for studying long surface waves.
These equations are a system of nonhomogeneous quasilinear equations of hyperbolic type. To solve these
equations the theory and technique of the numerical implementations were developed to the middle of the
seventieth (see, e.g., [21]).

Sometimes, constructing di�erence schemes for NLD equations, researches used quite simple tech-
niques, ignored the theory, and applied a direct term-wise approximation of derivatives entering the di�er-
ential equation. The papers focused on numerical modelling mainly discussed the formulation of a physical
problem, test and experimental data, but the features of the corresponding numerical method and its testing
remained outside publications. The issues that the results of numerical calculations could describe not only
a physical phenomenon, but also re�ect intrinsic properties of a di�erence scheme were barely discussed.

A comparative analysis and study of some properties of several �nite di�erence schemes for a regularized
equation was �rst given in [4]. In [2], a generalization of the Galerkin method forming the base of the �nite
element method was proposed for the same equation. Later, the method of �nite di�erences was widely used
for solution of NLD equations in comparisonwith the �nite elementmethod because the latter appeared to be
more laborious and its main advantage, calculations in complicated domains, was implemented with lesser
costs with the use of the �nite volume method.

In this paper we focus on the method of �nite di�erences because this is where we can demonstrate the
features of numerical solution of NLD equations di�ering from classic dispersion-free shallow water equa-
tions by the presence of the third-order derivatives with mixed spatial and time derivatives which requires
special approaches to construction of numerical algorithms.

The present study showed that stability conditions for di�erence schemes for NLD equations and also
conditions of appropriate approximation of dispersion termshave speci�c features and automatic declaration
of properties obtained for equations of the �rst approximation does not provide an adequate description of
actual properties of thenumericalmodel. For example, itwas shown that in contrast to the stability conditions
for the hyperbolic case speci�ed as restrictions on the Courant number, in this case we get an additional
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parameter relating the spatialmesh size to a typical depth of the basin. Another example is the following: if in
the case of hyperbolic equations the ‘scheme’ dispersion is clearly seen, then it can be removed, if necessary,
by developed methods of monotonization of solutions; however, in the case of NLD equations we need a �ne
analysis of relations between the ‘scheme’ and ‘physical’ dispersions in order to provide a description of the
actual dispersion pattern of the �ow.

We can also indicate other features of the numerical implementation of NLD equations such as a variety
of approaches to the splitting of NLD equations and respective di�erential schemes for construction of the
e�cient algorithms. In addition to known methods of splitting with respect to spatial directions (reduction
to one-dimensional problems) and with respect to physical processes widely used in calculations of multi-
dimensional systems of quasilinear equations, various analytical splitting methods were developed for NLD
models. These methods can be sometimes interpreted as a change of variables allowing one, for example, to
solve separately evolution equations and equations dependent only on spatial variables.

There are also a number of other problems inherent to numerical implementation of NLDmodels. For ex-
ample, there is a problem of coordination of properties of a di�erence scheme and the method implementing
it, which additionally may require certain restrictions on the parameters of the di�erence scheme and which
may reduce the advantages of implicit schemes.

Thus, in spite of the existing hierarchy of hydrodynamic models [24] associated with the derivation of
models and their properties and the accordingly generated hierarchy of numerical methods, the e�ective
use of the higher-order approximation models requires consideration of both the succession of properties of
di�erence schemes and the acquisition of new qualities.

1 Hierarchy of shallow water models
In spite of the variety of NLD models, they all can be combined in a form of a basic model containing a
parameter-function whose speci�cation can produce many known systems of NLD equations [7]. The tech-
niques of construction of numerical algorithms are given below in their application to the basic NLD model.
We restrict ourselves here with the study of the �ow of an ideal incompressible �uid between the movable
bottom z = −h(x, t) and the free boundary z = η(x, t) in the Cartesian coordinate system Oxz whose axis Oz
is directed vertically and the axis Ox coincides with the unperturbed water surface. NLD equations follow
from the Euler equation under the assumption that the �ow has a long-wave nature, i.e., the ratio µ = h0/L
is small and we can neglect the values of the order O(µ4). Here L and h0 are typical dimensions in horizontal
direction and depth, respectively. The required values are the total depth H = h + η and a certain function
u(x, t) approximating the �uid velocity and interpreted as the velocity in the approximate model. Most often,
u(x, t) is taken as the horizontal component of the velocity vector U = U(x, z, t) in the Euler equation on some
surface z = zu(x, t) included into the liquid layer, or the mean water velocity relative to the thickness of the
layer.

1.1 The basic model

In the derivation of the basic NLD model we assume that the following expansion is valid:

U(x, z, t) = u(x, t) + µ2v(x, z, t). (1.1)

Given condition (1.1) and retaining terms up to the order O(µ2), a basic NLD model was obtained in [7] and
its one-dimensional equations has the following form:

Ht + [H(u + J)]x = 0, ut + uux +
px
H
=
p0
H
hx −

1
H [(HJ)t + u(HJ)x + 2HJux] (1.2)
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where p is the pressure of the NLD model integrated over the thickness of the layer, p0 is the pressure on the
bottom, i.e.,

p = g H
2

2
−
H3

3 (D(ux) − u2x) −
H2

2
D2h, p0 = gH −

H2

2 (D(ux) − u2x) − HD2h (1.3)

J = 1
H

η

∫
−h

v dz, D = ∂
∂t
+ u ∂

∂x
.

The known NLDmodels can be obtained form basic model (1.2) under an appropriate choice of the func-
tion J [7, 24].

1.2 The case J = 0
If in addition to condition (1.1) we suppose the horizontal component of the velocity vector U does not depend
on the vertical coordinate z, or u(x, t) is taken as the velocity averaged over depth and de�ned by the formula

u = 1
H

η

∫
−h

U(x, z, t)dz

then J ≡ 0 and the equations of the basic model become simpler and take the form

Ht + (Hu)x = 0, (Hu)t + (Hu2 + p)x = p0hx (1.4)

where p and p0 are calculated by formulas (1.3). The models of such class are, for example, the models of
Green–Naghdi [5], Zheleznyak–Pelinovsky [27], Fedotova–Khakimzyanov [6, 8], and many others following
from the indicated models under transformation of the form of dispersive terms of the motion equation with
the use of the continuity equation. Other modi�cations used to simplify dispersive terms are also possible
(for example, using restrictions on the bottom geometry and �ow patterns [1, 20, 22]).

Analyzing di�erence schemes, it is often su�cient to consider only NLD equations describing �ows over
a horizontal bottom h(x, t) ≡ h0. In this case equations (1.4) are simpli�ed as

Ht + (Hu)x = 0, (Hu)t + (Hu2 + p)x = 0 (1.5)

where H = h0 + η and the dispersive component of the pressure has a cubic dependence on the total depth,
i.e.,

p = g H
2

2
−
H3

3 (uxt + uuxx − u2x). (1.6)

Amodi�cation of dispersive terms of NLDmodel (1.5), (1.6) was proposed in [8], which preserves the basic
properties of the model and at the same time simpli�es numerical implementation. For one-dimensional
�ows over a horizontal bottom these equations have the same form as (1.5) with the only di�erence that the
function p is determined by the following formula with linear dependence of the dispersive component of
the pressure on the total depth:

p = g H
2

2
− H

h20
3 (uxt + uuxx). (1.7)

Equations (1.5), (1.7) were derived in [8] from equations of complete NLD model (1.5), (1.6) written in dimen-
sionless variables and truncating terms of the order O(αµ2) in the averaged pressure p/H, where α = a0/h0
is the parameter of nonlinearity. The weakly nonlinear Peregrine model [20] can be also obtained from the
complete model by rejecting terms of the same order of smallness, but now from the expression px/H, i.e.,

Ht + (Hu)x = 0, ut + uux + gηx =
h20
3
uxxt . (1.8)
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In contrast to NLD models (1.5), (1.6) and (1.5), (1.7), Peregrine model (1.8) does not possess the law of to-
tal energy conservation [8] and the equation for the total momentum Hu cannot be written in conservative
form (1.5).

Being di�erent in the nonlinear case, after linearization all models [5, 6, 20, 27] take the same form and
in the case of one-dimensional �ows with zero background velocity their equations are

ηt + h0ux = 0, ut + gηx =
h20
3
uxxt . (1.9)

Finite di�erence approximations of these linear equations are used to reveal necessary stability conditions
for nonlinear di�erence schemes and also to study their dissipative and dispersive properties. If we suppose
that waves spread in the same direction, then system of equations (1.9) imply the so-called scalar RLW equa-
tion [19]:

ηt + c0ηx +
3c0
2h0

ηηx =
h20
6
ηxxt (1.10)

where c0 = √gh0, which together with its linear analogue closes the hierarchical chain of NLD models.

1.3 The case J ≠ 0
Another class of known models is speci�ed by the choice of the velocity u on a certain surface z = zu(x, t).
For example, NLD models from [18, 26] were derived for a stationary bottom with zu = −0.531h. In the case
when the original 2D-�ow is potential the function J can be speci�ed explicitly (see [7]):

J = −[H2
− (zu + h)](hxt + 2uxhx + uhxx) − [

H2

6
−
(zu + h)2

2 ]uxx . (1.11)

In the case of a �xed horizontal bottom the linear variant of the basic model for zu = const takes the form

ηt + h0ux = −(β +
1
3)

h30uxxx , ut + gηx = −βh20uxxt (1.12)

where β = z2u/(2h20) + zu/h0. For β = −1/3 relations (1.12) give equations (1.9). Besides, it is easy to calculate
β for the models from [18, 26].

1.4 Classic shallow water equations

Dispersion-free shallow water equations follow from the basic model if we assume p = gH2/2, p0 = gH, and
J = 0. In the case of an even bottom their form coincides with (1.5) and after linearization they can be written
in form (1.9) with removed dispersive summand:

ηt + h0ux = 0, ut + gηx = 0. (1.13)

2 Comparative stability analysis of di�erence schemes for
equations with dispersive and dispersion-free equations

Oneof the simplestway to construct a di�erence scheme for anNLDequation consists in direct approximation
of its derivatives by �nite di�erences. Such di�erence schemeswere �rst studied in [4]. Consider them relative
to RLW-equation (1.10) rewriting it in the form

ηt + c0ηx + aηηx = νηxxt (2.1)
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where a = 3c0/2h0, ν = h20/6. The choice of this equation as a model equation is good not only because it
describes nonlinear and dispersive processes, but also due to its thoroughly studied analytic properties. In
particular, it was shown in [3] that it is well de�nite in the sense of Hadamard (this equation is also called
BBM equation due to importance of this property), it has an analytic solution in the form of a solitary wave,
and the asymptotic behaviour of short waves in linear approximation is the same as for the Peregrine NLD
model.

Let ∆x and τ be the steps of a uniform grid for the variables x and t, ηnj be the values of the grid func-
tion η at grid nodes (xj , tn). Writing �nite di�erence schemes, we use the following notations for di�erence
derivatives:

ηnx,j =
ηnj+1 − η

n
j

∆x
, ηnx̄,j =

ηnj − η
n
j−1

∆x
, ηn∘

x,j
=
ηnj+1 − η

n
j−1

2∆x

ηnt,j =
ηn+1j − η

n
j

τ
, ηnx̄x,j =

ηnj+1 − 2η
n
j + η

n
j−1

∆x2
, ηnx̄xt,j =

ηn+1x̄x,j − η
n
x̄x,j

τ
.

The �rst of di�erence schemes studied in [4] was proposed previously in [19]. Using the above notations
and omitting the subscript j, we write it down in the following form:

ηnt + (c0 + aη
n)(

1
2
ηn+1∘
x
+
1
2
ηn∘
x
) = νηnx̄xt . (2.2)

This implicit scheme has the second order of spatial approximation and the �rst-order approximation in time.
An example of a scheme of the second-order approximation is the following scheme considered in [4]:

ηnt +
1
2
(c0 + aηn+1)ηn+1∘

x
+
1
2
(c0 + aηn)ηn∘

x
= νηnx̄xt (2.3)

which is an analogue of the well-known Crank–Nicolson scheme widely used for solution of evolutionary
equations. This scheme is nonlinear and requires iterations over nonlinearity in its implementation. Its mod-
i�cation was applied for the numerical implementation of the Nwogu model [18].

Harmonic analysis shows that di�erence schemes (2.2) and (2.3) are unconditionally stable in linear ap-
proximation because the transition factor ρ of these schemes satis�es the equality |ρ| ≡ 1. If we neglect the
dispersive summand in equation (2.1), then di�erence schemes (2.2) and (2.3) with the coe�cient ν = 0 now
approximate the dispersion-free equation

ηt + c0ηx + aηηx = 0 (2.4)

and are also unconditionally stable. These two examples show that di�erence schemes for equations with
dispersion can inherit stability properties of known schemes for dispersion-free equations. However, such
continuity is not always the case. Let us present the corresponding example.

In the scheme
ηnt + (c0 + aη

n)ηn∘
x
= νηnx̄xt (2.5)

considered in [4] the convective terms are approximated by central di�erences from the nth layer and func-
tions from the (n + 1)th time layer are used only in terms containing time derivatives. An analogue of such
scheme forms the base of algorithms of one splitting method for a system of NLD equations [10, 16].

Scheme (2.5) is weakly stable in linear approximation because its transition factor satis�es the inequali-
ties

1 ⩽ max
ξ∈[0, π]

(|ρ|2) ⩽ 1 +
c20
4ν

τ2

where ξ = k∆x, k is thewavenumber of a harmonic. Ifwe take ν = 0 in scheme (2.5), then foræ = τ/∆x = const
it becomes unconditionally unstable. Thus, the consideration of a dispersive summand improves the stability
of the scheme and transfer it to the class of weakly stable schemes. This fact established by the authors for
scheme (2.5) takes place in the general case too. Namely, as a rule, schemes for the dispersion-free shallow
water model are stable under more strict conditions than similar schemes for NLD equations.
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As an example we consider a �nite di�erence scheme with recalculation for system of nonlinear equa-
tions (1.8) proposed in [19]. In order to describe the properties of this scheme not detected by other authors,
we write its linear analogue obtained by approximation of system (1.9), i.e.,

η∗ − ηn

τ
+ h0un∘

x
= 0

unt + g(
1
2
η∗∘
x
+
1
2
ηn∘
x
) = νunx̄xt

ηnt + h0(
1
2
un+1∘
x
+
1
2
un∘
x
) = 0

(2.6)

where ν = h20/3. In this scheme �rst we calculate the auxiliary value η∗ by explicit formulas and then obtain
the solution un+1 to the di�erence motion equation by the scalar sweep method, and after that recalculate
the free boundary ηn+1 on the new time layer by explicit formulas.

Excluding the value η∗ from the�nite di�erencemotion equation,we come to the systemof twodi�erence
equations

ηnt +
h0
2 (un+1∘

x
+ un∘

x
) = 0, unt + gη

n∘
x
=
τc20
2
un∘
x
∘
x
+ νunx̄xt (2.7)

where

un∘
x
∘
x,j
=
un∘
x,j+1
− un∘

x,j−1

2∆x
.

Motion equation (2.7) shows that in the linear case the recalculation procedure is equivalent to introducing
an arti�cial viscosity into the scheme.

Harmonic analysis gives the following stability condition:

c0æ ⩽ 1 +√1 +
4
3
δ2 (2.8)

where δ is the parameter characterizing the degree of the grid resolution relative to the typical depth h0:

δ = h0
∆x

. (2.9)

For su�ciently �ne grids stability condition (2.8) can be replaced by the following restriction on the time step:

τ ⩽ 2
√3

τ0 ≈ 1.15τ0

where τ0 = h0/c0 is the typical time necessary for a wave spreading with the velocity c0 to travel the distance
equal to the typical depth h0. Themore strict inequality c0æ ⩽ 2wasusedpreviously as the stability condition
for Peregrine scheme (2.6), which is the stability condition for a scheme approximating dispersion-free linear
shallow water equations (1.13) for ν = 0.

We note that �nite di�erence schemes considered above are implicit. Their implementation generally
uses the scalar sweepmethod, whichmay require additional restrictions on grid steps to ensure well de�nite-
ness of the algorithm. It is also worth noting that not all implicit schemes for systems of NLD equations are
unconditionally stable. For example, if we do not apply recalculations in �nite di�erence Peregrine scheme
(2.6), i.e., use scheme (2.7) with the excluded viscous term 0.5τc20u

n∘
x
∘
x
, then it becomes only weakly stable

under the condition

c0æ ⩽ 2(1 +√1 +
4
3
δ2) .

Remark 2.1. In almost all papers related to numerical modelling within the framework of NLD models the
problems of stability of di�erence schemes either were not discussed at all (referring to the fact that only
implicit schemes are applied), or such restrictions on the Courant numberwere given that cause the necessity
of re�ning the time step in a certain proportion to re�ning the spatial mesh size.
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At the same time, in the simulation of the spread of undular bores, which is possible only within the NLD
theory, an acceptable description of dispersive e�ects in a shallow water area is obtained for δ ∈ [2, 4] (ac-
cording to the results of [12]). A similar result was obtained in [11], namely, it was shown that in solution of
practical problems of long spread of waves in the ocean with subsequent going to the shelf, the choice of the
spatial mesh size must correspond to the value δ = 1 on the shallow area and to δ = 4 in the deep part of the
ocean. In this case stability conditions of form (2.8) mean that for a �nite value of the parameter δ the calcu-
lations based on equations with dispersion can be performed with a time step τ increased in comparison to
similar schemes for dispersion-free equations.

3 Analysis of dispersive properties of �nite di�erence methods
Analysis of approximation errors shows that in schemes (2.2), (2.3), (2.5) considered above the ‘scheme’ dis-
persion has the same form as the dispersion of the approximated equation, and for �nite grid steps this may
cause distortions in the dispersive �ow pattern described by the NLD model.

Let us consider the case of scheme (2.2) in detail and calculate the principal term of its phase error ∆φ
foræ = const [23]. We have

∆φ = − c0æ
6
ξ3 −

c30æ3

12
ξ3 + O(µ4).

It is easy to check that the phase error has the same order on ξ as the ‘physical’ dispersion of themodel. There-
fore, correct description of dispersive properties of the model by a di�erence scheme requires the following
restriction:

c0æ
6
ξ3 +

c30æ3

12
ξ3 ≪ c0æ

ν
∆x2

ξ3

which implies the inequality
c0æ ≪ √2(δ2 − 1). (3.1)

Relation (3.1) implies that the spatial step ∆x must be less than the depth h0. In this case for su�ciently
�ne grids (δ ≫ 1) the scheme dispersion cannot damp the dispersion of the model. Thus, for some schemes
approximating equations with dispersion, for example, for scheme (2.2) considered here, a good approxima-
tion of the ‘physical’ dispersion can be obtained only on �ne calculation grids. However, one can indicate
�nite di�erence schemes for NLD equations where the ‘scheme’ dispersion does not dump the ‘physical’ one
even on relatively coarse grids. For example, in Peregrine scheme (2.7) the principal part of the phase error is
calculated by the formula

∆φ = c0æ
24 (c20æ

2 − 4) ξ3 + O(ξ4).

It is seen that if c0æ = 2, then the additional dispersion introduced by di�erence scheme (2.7) is minimal and
the scheme remains stable.

The above analysis of approximation errors has shown that in some�nite di�erence schemes the ‘scheme’
dispersionmay dump the dispersion of NLDmodel. To get rid of such undesirable property, a series of papers
proposed to modify the scheme by introducing principal terms of the phase error with the opposite sign into
it. This allows us to cancel themain by approximation order dispersion terms of scheme origin and to improve
the representation of the dispersion in the approximated model.

Such technique of increasing the accuracy of numerical calculations was used in widely cited papers
[1, 18] and others. For example, the main result of [18] consisted in derivation of an NLD model with en-
hanced representation of the dispersion of a full hydrodynamic model, the approximation of the NLD model
was performed with the use of the predictor–corrector method where main calculations applied a Crank–
Nicolson scheme and then the obtained values were used to calculate the term of ‘scheme’ dispersion, which
was included into calculations on the correction step as a known right-hand side of equations. The analysis
of stability was performed in this paper for the scheme approximating linear equations (1.12) and the right-
hand side mentioned above as well as the correction step were ignored. The Neumann analysis leads to an
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expression for eigenvalues of the transition matrix whose analytic study is rather complicated in the general
case. As the result, the authors present a rough stability condition in the form of the inequality c0æ < 2, i.e.,
in essence, the stability condition for an analogue of a di�erence scheme for linear shallow water equations
(1.13). However, assuming β = −1/3, we get a particular case of a di�erence scheme approximating the Pere-
grine NLD equations, and as has been shown by our analysis, the eigenvalues of its transition matrix does
not exceed one under more weak condition (2.8) discussed in the previous section.

Later, a di�erence scheme of the fourth-order approximation was applied to the Nwogu model and its
completely nonlinear variant. In this case the ‘scheme dispersion’ introduced by the third-order derivatives is
excluded automatically. A �nite di�erence predictor-corrector schemewas developed in [25]; this schemewas
based on the knownAdams–Bashforthmethod of the third-order approximation (predictor step) andAdams–
Moulton method of the fourth-order approximation (corrector step). Despite the popularity of the proposed
method, the stability of this di�erence scheme was not discussed in the papers where it was applied. The
time step was usually taken in calculations proportionally to the spatial mesh size with some experimentally
chosen coe�cient of proportionality.

4 Special construction techniques for numerical algorithms
Themethod of construction of di�erence schemes by direct approximation of all terms of equations including
mixed third-order derivatives hasmany drawbacks. Amethod allowing one to split NLD equations and reduce
the implementation of the corresponding numerical algorithm to successive solution of an ODE system and
an elliptic equation seems to be more e�cient. Such technique was suggested in [3, 4] where the equation
ut+ux+uux = uxxt waswritten in the form (u−uxx)t+ux+uux = 0 convenient for splitting into two equations

Qt + ux + uux = 0, u − uxx = Q (4.1)

which implies di�erence approximations according to the form of these equations.
We extend this technique to basic model (1.2) rewriting it in the following divergent form:

Ht + (HU)x = 0, (HU)t + (HuU)x + (HJu)x + px = p0hx (4.2)

where U = u + J. Further we transform the part of the equation related to the pressure. Using expressions
(1.3), separate the following terms from px − p0hx:

−(
H3

3
uxt)x +

H2

2
uxthx = −(

H3

3
ux)xt + (H

2Htux)x + (
H2

2
uxhx)t − (

H2

2
hx)tux = Qt + Q2

and denote the remaining terms by Q1. In this case,

Q = −(H
3

3
ux)x +

H2

2
uxhx , Q2 = (H2Htux)x − (

H2

2
hx)tux .

Now we can rewrite the motion equation from (4.2) by analogy with (4.1), i.e.,

Vt + (HuU)x + (HJu)x = −Q1 − Q2, HU + Q = V. (4.3)

One of the most widely used methods of construction of numerical algorithms consists in the following.
First we calculate Hn+1 from the continuity equation using an explicit (or implicit relative to H) scheme.
After that, based on an appropriate di�erence method approximating the �rst equation of (4.3), we explicitly
calculate Vn+1 from the obtained values of Hn+1. Then we solve the elliptic equation HU + Q = Vn+1 (in the
one-dimensional case this is a second-order ordinary di�erential equation) with respect to un+1 (using the
sweep method in the one dimensional case).

In [16] and other papers of that author a similar approach was used for construction of �nite di�erence
schemes for a modi�ed Green–Naghdi model and Aleshkov’s model written in a free nonconservative form.
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For J = 0 some variants of �nite di�erence schemes with separation of Qt were also considered in [10, 22]
where some modi�cations were proposed, namely, the use of staggered grids and �nite di�erence schemes
with weights. In the case J ̸= 0 this approach was used in [25].

Two other approaches, which can be illustrated on the basic model, consists in the separation of spatial
and time derivatives with the use of additional variables φ = ut and ψ = ηt and thus we get elliptic equations
for determination of φ and ψ and an ODE system for u and η. In the case J = 0 such splitting requires only
one variable φ = ut. For numerical implementation of NLD models admitting the Galilean transformation,
the introduction of the variable d = ut + uux is rather e�cient. These variants were considered in [10, 15]
where some �nite di�erence methods were constructed on their base for the Zheleznyak–Pelinovsky model
and some other NLD models.

Another variant of splitting leads to an extended system of equations consisting of an elliptic equation
for the dispersive component of the pressure p integrated over depth from (1.3) and a hyperbolic system of
equations with a right-hand side. Such splitting preserving the continuity of numerical algorithms developed
for shallow water equations proved to be fruitful for construction of numerical solution algorithms for a �at
[14] and spherical [13] geometry.

5 Conclusions
This paper indicates that the study of �nite di�erence methods applied to solution of hydrodynamics NLD
equations is behind the pace of development of NLD models themselves and their practical application. On
the one hand, the edge of numerical modelling of complex problems describing wave modes is formed by
such problems as the analysis of instability related to nonlinearity of equations and consideration of sharp
changes in the bottom surface [17], an enhanced description of the dispersion of ‘short’ waves, and on the
other hand, there are many gaps in the study of fundamental properties of di�erence methods even in the
case of the simplest NLD equations. The application of a hierarchical approach allows one to ‘get rid’ of those
gaps in existing methods of numerical modelling, to clarify their nature, and reveal the di�erence from the
solution methods for dispersion-free shallow water equations. In the future such studies will allow us to
build a hierarchy according to properties determining the accuracy and operability of numerical algorithms
and obtain their relative performance on e�ciency [9].
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