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Abstract. The numerical simulation of the run-up of long surface waves on a plane slope is
presented. Using a method based on the combination of the TVD scheme and the SPH method
the shallow water approximation is applied to the solution of the well known model problem
of a run-up of a wave approaching from an area of constant depth towards a plane slope. The
numerical method has proved to be reliable and effective not only in the range of small ampli-
tudes, but also outside of the theoretical limits of applicability of the shallow water theory, such
as for the modelling of breaking waves. The qualitative and partially quantitative comparison
with the results of numerical calculations of other authors are presented. The differences in the
results caused by the differences in the numerical algorithms are highlighted.
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1 INTRODUCTION

The interaction of waves with coasts and coastal installations is one of the most interesting
and complex phenomena studied in the framework of the mathematical models of wave hydro-
dynamics. The investigation of the final phase of tsunami waves’ existence – their run-up on
coast and run-down – belongs to this class of problems. It is necessary to define the extreme
values of run-up, distances of wave propagation to a coast, drying areas, inundation depths, and
duration of land’s being under water with necessary precision and well ahead of time.

The development of reliable algorithms for the solution of the considered class of problems
requires not only the theoretical analysis of the mathematical models and the numerical meth-
ods used for their implementation, but also the validation on the test problems. One of the
“canonical” problems of this type is the problem on the definition of the parameters of a long
wave run-up on a plane slope with the given slope angle, where a wave runs up a slope from the
side of the bottom part with a constant depth [1]. It is customary to assume that such problem
reflects the main physical aspects of the considered phenomenon with a sufficient completeness.

The current paper is devoted to the application of our combined TVD+SPH method [2] to
the solution of the above described “canonical” problem under the conditions, which recon-
struct the run-ups of long waves with various configurations and amplitudes on the slopes with
different slope angles. Our task is to identify the basic characteristics of the phenomena for
weakly nonlinear (non-breaking) as well as for highly nonlinear (breaking) waves. The stability
(robustness) of the algorithm has also to be estimated for a wide range of parameter variation.

The first part of the paper briefly describes the problem formulation; the second part presents
the results of the numerical modelling of the wave processes, which were investigated experi-
mentally in the Large Wave Flume of the University of Hannover [3]. The obtained results are
compared with those of the numerical modelling by the research group of Prof. E.N. Pelinov-
sky [4].

2 PROBLEM FORMULATION AND NUMERICAL ALGORITHMS

One-dimensional problem of wave run-up on a plane slope adjacent to a horizontal bottom
with a constant depth h0 is considered in the framework of the shallow water model. The
Cartesian coordinate system Oxz is used with the vertical axis Oz directed upward and with the
coordinate line z = 0 coinciding with the unperturbed free surface of an ideal fluid layer. A fluid
layer is bounded from below by a fixed bottom z = −h (x), and from above – by a moving free
boundary z = η (x, t), where t is the time. In this case the system of shallow water equations is
written in the form of the conservation laws:

qt + Fx = G, t > 0, (1)

where

q =

(
H
Hu

)
, F =

(
Hu

Hu2 + gH2/2

)
, G =

(
0

gHhx

)
,

g is the gravity acceleration. The sought values are the full depth of a fluid layer H(x, t) =
η(x, t) + h(x) ≥ 0 and u(x, t) – its velocity, which is vertically averaged from bottom to free
surface.

In [2] the channel was considered, where the plane slope was positioned to the left from the
bottom part with a constant depth. However, in the present work the plane slope is placed to the
right from the horizontal segment, making the comparison to the results of other authors more
convinient. In this case the solution domain is limited from the left by a impermeable wall at the
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point x = 0, and from the right – by a moving boundary x0 (t), which separates water from land
(waterfront point). A moving boundary is unknown, therefore, the number of sought functions
increases.

The problem for the equation (1) is closed by the initial and boundary conditions. Under the
assumptions that the initial position x0 (0) of the waterfront point is known and the wave moves
from left to right, the boundary conditions take the following form:

H (x0(t), t) = 0, u (0, t) = 0, t ≥ 0; (2)

η (x, 0) = η0 (x) , u (x, 0) = u0 (x) , 0 ≤ x ≤ x0 (0) . (3)

The relief of bottom and adjacent land is given by the function

z = −h(x) =

{
−h0, 0 ≤ x ≤ xs,

−h0 + (x− xs) tan β, xs ≤ x ≤ Lx,
(4)

where β > 0 is the plane slope angle, xs > 0 is the given abscissa of the transition point between
the inclined and the horizontal bottom segments, Lx = xs + (z0 + h0) cot β, z0 > 0 is the land
height at the point x = Lx. The value z0 is chosen so that the maximal vertical run-up of a wave
on a coast is less than z0. Therefore, the inequality x0 (t) < Lx is satisfied for all t > 0.

In our investigations presented in this paper, we have used two numerical methods of the
second accuracy order for modelling of wave run-up on a coast. The first method is based on
the approach suggested in [5] and represents an original combination of the SPH (smoothed-
particle hydrodynamics) method and the finite-difference scheme with TVD properties (named
below as the TVD+SPH method). We supplemented this method with the algorithm for com-
puting a moving waterfront point. The comparative analysis of the methods for modelling of
long surface wave run-up in the framework of the shallow water theory [2] has shown that the
TVD+SPH method appears to be the most advanced for this class of problems.

The second method, conventionally named as “exact”, is presented in [6, 7]. It uses a moving
grid, and the analytical solution of the problem in a small vicinity of a waterfront point is applied
to compute its position and velocity.

3 NUMERICAL RESULTS

Let us consider some results of the numerical solution of the test problem, where the charac-
teristics of run-ups of positive and negative pulses (positive and negative polarity correspond-
ingly) on a slope are defined for a wide range of initial wave amplitudes. We compare our
numerical results with the results of other authors. In particular, qualitative and quantitative
comparison is done with the results of the research group of Prof. E.N. Pelinovsky [4, 8, 9],
which include the analytical solutions (for non-breaking waves) and the data of laboratory and
numerical investigations. The experiments were performed in the Large Wave Flume of the
University of Hannover, using a wave flume consisting of a segment with a constant depth
h0 = 3.5 m and length xs = 250 m, adjacent to a plane slope 1 : 6 which was positioned near
the right boundary of the flume [3]. The numerical computation in [4] were done using the
software package CLAWPACK [10].

The initial data were given by the relations

η (x, 0) = A cosh−2
[
(x− xw)/L

]
, u (x, 0) = 2

[√
g (h0 + η (x, 0))−

√
gh0

]
. (5)
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As it is shown in [11, 12], these relations correspond to the exact solution (Riemann wave) of
the shallow water equations

H (x, t) = H0 [x− V (H) t] , V (H) = 3
√

gH − 2
√

gh0, H0 (x) = h0 + η (x, 0) .

The authors of [4] interpret the value L as the half of the length of the initial elevation and
take L = 11 m in their computations. The extremal values of surface displacements (wave
amplitudes) were initially positioned near the point xw = 50 m, and they varied in the range
from 0.05 to 3.5 m for the waves with positive polarity, and in the range from −0.05 m to
−3.49 m – for the waves with negative polarity.

In comparison to [4], we have additionally modelled the waves with smaller initial ampli-
tudes, namely 0.001 m, 0.0025 m, 0.005 m, 0.01 m. Let us note that the applicability limits for
the shallow water theory, which are defined by the possibility of using the analytical formula
of Synolakis, are bounded in our computations by the interval of initial amplitude variation
0.008064 ≤ A < 0.228976576. However, the results for the amplitudes which fall outside the
limits of the given interval, can be used for testing new algorithms for wave run-up modelling
in the framework of the shallow water model. At the least, these results explicitly point out that
the used numerical methods can work even outside the theoretical limits of applicability of the
approximated mathematical model.

We have chosen the display format for the results according to the examples provided in [4].
Unfortunately, some peculiarities of the formulations of numerical modelling problems [4] do
not allow direct quantitative comparison of the results, but qualitative comparison is possible.

The first series of graphs (Fig. 1) shows the profiles of free surface computed for the same
set of amplitudes as in [4]. Each graph presents the waves at the initial time moment (lines (1));
near the transition point between the inclined and the horizontal bottom segments (lines (2),
which correspond to the time moment t = 30 s for the amplitudes A = 0.1 m and A = 0.5 m,
and t = 20 s – for A = 1.5 m and A = 3.5 m); at the moment of nearly vertical run-up (lines (3),
which correspond to the time moment t = 40 s for the amplitudes A = 0.1 m and A = 0.5 m,
and t = 30 s – for A = 1.5 m and A = 3.5 m); and at the moment of approach of the wave,
reflected by the slope, to the opposite boundary of the computational domain (lines (4), which
correspond to the time moment t = 70 s for the amplitudes A = 0.1 m and A = 0.5 m, and
t = 60 s – for A = 1.5 m and A = 3.5 m). Let us note that for small amplitudes our results
are not only in qualitative agreement with the results from [4], but in quantitative agreement
as well; whereas the differences in free surface profiles, which evolve after the interaction of
waves with slope, significantly increase with the increase of initial amplitudes.

The influence of the non-linearity can be already seen for the wave with the smallest initial
amplitude. The leading edge of the wave gradually becomes steeper, but wave breaking (gra-
dient catastrophe) does not happen (Fig. 1 (a)), the amplitude of the wave, which propagates
above the horizontal bottom segment, does not essentially decline. After the reflection from the
slope the wave form changes significantly and in fact changes into the N -wave, which contains
the fragment of depression lower than zero level.

With the increase of an initial wave amplitude the influence of non-linear effects on wave
characteristics is also enhanced. Under the impact on non-linearity the leading edge of waves
become significantly steeper, whereas trailing edges flatten out so that the wave lengths increase
and the amplitudes decline. As a result the already “breaking” waves approach a plane slope
and run up to it. These considerations are proved by the Figure 2, which presents the charac-
teristics of the computed incident and reflected waves above the flume segment with a constant

1130



Leonid B. Chubarov, Alexandr D. Rychkov, Gayaz S. Khakimzyanov and Yurii I. Shokin

(a) (b)

1 2

3

4

0 50 100 150 200 250 300

x [m]

0

0.1

0.2

0.3

0.4

0.5

η
 [
m
]

0 50 100 150 200 250 300

x [m]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

η
 [
m
]

1 2

3

4

(c) (d)

0 50 100 150 200 250 300

x [m]

0

1

2

3

4

5

η
 [
m
]

1 2

3

4

0 50 100 150 200 250 300

x [m]

0

2

4

6

8

η
 [
m
]

1

2

3

4

Figure 1: The free surface profiles for run-up on a plane slope for the waves with positive polarity and the ampli-
tudes A = 0.1 m (a), 0.5 m (b), 1.5 m (c), 3.5 m (d) at the initial time moment, near the transition point between
the inclined and the horizontal bottom segments, the moment of nearly vertical run-up, the moment of approach
of the wave, reflected by the slope, to the opposite boundary of the computational domain. The values of time
moments are given in the text

depth (Fig. 2 (a)) and above the transition point between the inclined and the horizontal bottom
segments (Fig. 2 (b)). Fig. 2 (a) shows that incident and reflected waves are time-spaced, the
incident waves have vertical leading edges, whereas the reflected waves have a smooth form.
Above the transition point between the inclined and the horizontal bottom segments the waves
are not time-spaced, here an incident wave meets a reflected wave before completely passing
this point x = xs.

The comparison of the results from the Fig. 3 (a) with the results from [4] demonstrates not
only quantitative but also significant qualitative differences. The run-up heights computed with
the TVD+SPH method are much larger, whereas the duration of run-up is much shorter. Be-
sides, in contrast to the results of [4], the dependencies of maximal (in absolute magnitude) run-
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Figure 2: The mareograms, computed above the segment with constant depth of the virtual wave flume at the point
x = 150 m (a), the transition point x = 250 m between the inclined and the horizontal bottom segments (b), for
the run up of the waves with initial amplitudes A = 0.1 m (1), 0.5 m (2), 1.5 m (3), 3.5 m (4)

downs on initial amplitudes are monotone, and the dependencies of vertical run-ups are smooth
for all amplitudes. Finally, in [4] the absolute values of run-downs change non-monotonically
and decrease with tending to zero (with that being in poor agreement with the ideas of the
physics of modelled processes) for the largest initial amplitudes starting from A = 2 m. In
the results presented in 3 (a) these values increase slowly, but monotonically. There are also
differences in velocities: for the same conditions the run-up and run-down processes happen
significantly slower in [4].

Some of the data obtained by the solution of the considered problem is presented in Table 1.
The next results were obtained for the modelling of run-up of the waves with negative polar-

ity (A < 0). The initial positions coincided with those of the waves with positive polarity. The
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Figure 3: The dynamics of the vertical run-up on a plane slope of the waves with positive (a, A > 0) and negative
(b, A < 0) polarity with the intial amplitudes A = ±0.1 m (1), ±0.3 m (2), ±0.7 m (3), ±1.5 m (4), ±2.5 m (5),
A = 3.5 m (a) and A = −3.49 m (b) – (6)
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Ratio Ratio Ratio
of maximal run-up of maximal run-down of maximal run-down
to initial amplitude to initial amplitude to maximal run-up

A, m TVD+SPH [4] TVD+SPH [4] TVD+SPH [4]
0.05 4.868 4.7354 1.104 1.0053 0.2268 0.2365
0.1 5.499 4.6779 1.024 1.0015 0.1862 0.2211
0.3 5.658 3.5827 0.682 0.7363 0.1205 0.2055
0.5 5.0096 2.9408 0.5778 0.5733 0.1153 0.1962
0.7 4.503 2.5674 0.4829 0.4672 0.1072 0.1820
1 3.9676 2.2246 0.396 0.3653 0.0998 0.1642

1.5 3.4581 1.9056 0.2983 0.1877 0.0863 0.0983
2 3.1606 1.7105 0.2547 0.0899 0.0806 0.0526

2.5 2.9644 1.5826 0.2144 0.0229 0.0723 0.0144
3 2.8293 1.4976 0.189 0.0065 0.0668 0.0044

3.5 2.7244 1.3807 0.1663 0.0009 0.0611 0.0007

Table 1: Main characteristics of the run-ups of the waves with positive polarity on a plane slope, computed using
two numerical algorithms

initial form of the waves coincided as well with an accuracy up to the plane reflection. As in the
case of the positive pulses, the results obtained by the TVD+SPH method are close to the results
from [4] for small amplitudes, but significantly differ for |A| > 1 m. The primary analysis of
the computed profiles shows that the for large amplitudes the times of arrivals of the extremal
values to the same points do not coincide. Thus, the profiles in Fig. 4 correspond to the time
moments other than those in [4]. Each graph shows the waves at the initial time moment (lines
(1)); near the transition point between the inclined and the horizontal bottom segments (lines
(2), which correspond to the time moment t = 20 s); at the moment of nearly vertical run-up
(lines (3), which correspond to the time moment t = 41 s for the amplitude A = −0.1 m,
t = 43 s – for A = −0.5 m, t = 46.5 s – for A = −1 m, t = 53.86 s – for A = −3.49 m);
and at the moment of approach of the wave, reflected by the slope, to the opposite boundary
of the computational domain (lines (4), which correspond to the time moment t = 75 s for the
amplitudes A = −0.1 m, −0.5 m and −1 m, and t = 85 s – for A = −3.49 m).

Thus, for A = 1.0 m some advance is seen in the positions of run-up and run-down pro-
files in comparison to the results of the work [4], where as for A = −3.49 m – the delay is
present. The numerical experiment with such amplitude of the wave with negative polarity can
be hardly considered to be reasonable because of the obvious inapplicability of the shallow wa-
ter theory. However, the possibility of performing the computations of this kind testify to the
high working efficiency of the algorithm. The corresponding fragment of the figure (Fig. 4, d)
demonstrates the significant differences for all time moments with the meaningfully close figure
from the work [4], which demonstrate themselves in much more complicated forms of incident
and reflected waves.

The general idea about the waterfront dynamics during the run-up of waves with negative
polarity on a plane slope can be given by the results (Fig. 3 (b)), obtained by the TVD+SPH on
the grid with 6000 nodes. However, these results appeared to be practically identical to those
obtained on the grid with 4000. The graphs on this figure demonstrate the monotonic increase of
the values of both primary and secondary run-downs, yet the value of run-up increases up to the
initial amplitude −2.5 m and then decreases for the amplitudes A = −3 m and A = −3.499 m.
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Figure 4: The free surface profiles for the run-up on a plane slope of the waves with negative polarity with initial
amplitudes A = −0.1 m (a), −0.5 m (b), −1 m (c), −3.49 m (d) at the initial time moment, and at the moment
of approach of the wave to the transition point between the inclined and the horizontal bottom segments, at the
moment of nearly vertical run-up, and at the moment of approach of the wave, reflected by the slope, to the opposite
boundary of the computational domain. The values of time moments are given in the text

Further we compare our results with those of the work [4]. Our results were obtained by
the TVD+SPH method and the algorithm, based of the definition of the waterfront point using
the analytical solutions of the shallow water equations for the formulation of the difference
boundary conditions on a moving waterfront [6]. The values from [4] were obtained partially
from its text and partially by the digitization of the graphs presented there.

The first graphs (Fig. 5) demonstrate the dependency of the maximal values of R/A on the
initial amplitude in the phase of run-up of the waves with positive polarity. These values, ob-
tained using the TVD+SPH method, are significantly larger than the results from the work [4]
for practically all considered amplitudes. Yet, they are close to the results obtained using the
methodology from the work [6], which, however, happen to be somewhat smaller for the largest
amplitudes. Let us note, that if for the absolute values of the run-up values R the monotonic
increase takes place, then the corresponding relative values R/A increase first (up to the ampli-
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Figure 5: Relative characteristics of the run-ups of the wave with positive polarity with respect to their initial
amplitudes: maximal values of R/A during run-up phases (1–3) and |R|/A – during run-down phases (4–6),
computed with the TVD+SPH method (1, 4), the methods from [6] (2, 5) and [4] (3, 6); the domain of applicability
of the analytical solution [13] is marked by grey color.

tude 0.25 m), and only after that they begin to decrease monotonically. This can be explained
by the strengthening of the non-linear effects’ influence, which lead to the increase of the lead-
ing edge steepness, decrease of the heights and increase of lengths for the waves approaching
a slope. In the results [4] the extremum is not found because of the absence of the data for
small amplitudes. The significantly smaller values from [4] can be explained by the fact that the
implicit algorithm is implemented in the software package CLAWPACK used by the authors.
The absolute stability of the algorithm allows computing with a rather large time step, leading
to the significant growth of the numerical dissipation and a subsequent decrease of the results
quality.

Considering the characteristics in the run-down phases, some changes can be noted. For
small amplitudes (nearly up to A = 1 m) the values, obtained by the TVD+SPH method,
increase monotonically and practically coincides with the results from [4], which starts to de-
crease sharply and tend to zero for the largest amplitude. On the contrary, the results, obtained
by the TVD+SPH algorithm, continue the stable monotonic increase and stay smaller than the
results from [6] for the whole range of amplitude variation. The analysis of the graphs with
the maximal values |R|/A in the run-down phase points in the first place to the preserving
anomalous tendency of the results from [4] to zero for A > 1 m and their closeness to the
results, obtained by the TVD+SPH algorithm, up to the amplitude A = 1 m. The behavior of
the TVD+SPH results are qualitatively close to the distribution computed by the methodology
from [6], which however is positioned significantly higher. The results obtained for the smaller
initial amplitudes, as in the run-up phase, demonstrate the presence of the extremum, which is
slightly shifted to the direction of the smallest values of A. Unfortunately, the results, computed
in the discussed range of the argument variation and needed for the comparison, are absent on
the work [4].
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The relations of the maximal values of |R| in the run-down phase to the maximal values of
R in the run-up phases decrease with the increase of initial amplitude of the wave approaching
a slope. As before, the results from [4] tend to zero; the results from [6] have the largest values;
and the results obtained by the TVD+SPH algorithm demonstrate the presence of extremum in
the domain of the very small amplitudes.

The analogues of the above considered characteristics of the run-up of waves with negative
polarity show that, as in the case of the positive pulses, the results obtained by the TVD+SPH
algorithm are larger than the results from [4]. This is expressed to a greater degree in the run-
up characteristics, whereas the corresponding run-down characteristics appear to be very close.
Both sets of relative values for the run-up phase (Fig. 6) possess the maximums in the range
of small initial amplitudes. After reaching these maximums the corresponding distributions de-
crease monotonically. The relative characteristics of the run-down phase do not have extremes
and decrease monotonically with the increase of initial amplitude. Let us note some peculiarity
of the value R variation, computed using the TVD+SPH algorithm. This peculiarity consists
in the fact that near the initial amplitude A = 2.5 m the monotonous increase of the maximal
vertical position of the moving waterfront point is changed to equally monotonous decrease.
We can assume that this is caused by the specificity of the non-linear effects’ simulation by
the TVD+SPH algorithm, which leads to an early breaking of the waves with large amplitudes,
approaching a slope, with the simultaneous decrease of their positive fragments’ heights. This
conclusion finds its proof on the profiles of the corresponding free surfaces (Fig. 4) as well as
on the graphs of the dynamics of the moving waterfront point (Fig. 3 (b)). The distributions of
the relations of the maximal values of |R| in the run-down phase to the maximal values of |R|
in the run-up phase are essentially close qualitatively. At first, they decrease rather steeply and
take the minimal value for the initial amplitude A = −1 m, and then they increase slowly. Here
the distributions from the work [4] appear to be higher.
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Figure 6: The dependence of the relative characteristics of the run-ups of the waves with negative polarity on their
initial amplitudes: maximal values of R/A in the run-up phases (1, 2) and |R|/A – in the run-down phases (3, 4),
computed with the TVD+SPH method (1, 3) and [4] (2, 4); the domain of applicability of the analytical solution
[13] is marked by grey color
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The analysis of the peculiarities of the run-ups of waves with different polarities (positive
and negative pulses) has shown that the waves with positive polarity lead to the larger values
of the vertical run-down R. However, the velocities of the waterfront point for the run-up of
waves with negative polarity are significantly larger. This leads to the steeper trailing edges of
waves, being in the qualitative agreement with the results of the work [8]. Let us also note that
for the run-up of waves with positive polarity the vertical displacements of the waterfront points
in the run-up phase exceed significantly the displacements in the run-down phase, whereas for
the waves with negative polarity these values appear to be much closer. The non-monotonicity
of free surface profiles above the breakpoint of the bottom relief (Fig. 2), which is absent in the
results from [8], is the consequence of the interaction of the approaching wave and the wave
reflected from the slope.

Summarizing the comparison with the results from the work [4], which are connected to
some extent with the conditions of the physical experiments in the wave flume in the University
of Hannover, let us note that even the application of the well-known computer code, created by
highly professional specialists, requires the detailed investigation of the underlying algorithm,
understanding of its peculiarities, and correct parameter settings. Otherwise it can happen that
the numerical effects, which are intrinsic for the considered algorithm, can corrupt significantly
the values of the computed variables, complicate the adequate interpretation of the obtained
results, and lead to the physically wrong conclusions.

Let us also note that the explicit algorithm, which is used in the TVD+SPH method, guaran-
tees the necessary computational accuracy and proves the correctness of the choice of numerical
schemes for the modelling of fine effects arising in wave run-ups even on simple model slopes.

4 CONCLUSIONS

The presented results have demonstrated the possibilities of the combined TVD+SPH numer-
ical method in the definition of the main characteristics of run-ups of the waves with various
configurations in the “canonical” problem on long wave run-up on a plane slope. This method
has proved to be functional and effective not only in the range of small amplitudes where the
shallow water approximation os theoretically allowed, but also beyond its theoretical applica-
bility in the case of breaking waves.

The analysis of the run-ups of solitary waves with various polarity (positive and negative
pulses) has shown that the positive pulses have lead to the larger values of vertical run-up in
comparison to the negative pulses. This conclusion is in the qualitative agreement with the
results of the work [4]. It was also shown that the interaction of the incident and reflected
waves above the breakpoint of the bottom relief has lead to the non-monotonicity of free surface
profiles, which has influenced the run-up characteristics.

We consider the development and careful analysis of the version of the TVD+SPH algorithm
for the modelling of run-ups of catastrophic waves of various configurations in the spatial for-
mulations and with taking into account the real properties of water areas and adjacent coasts to
be a promising research direction.
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